1887

Abstract

A isolate containing a fifth RNA is present in the Pithiviers area of France. A full-length cDNA clone of RNA-5 was obtained and placed under the control of a T-RNA-pol promoter that allowed the production of infectious transcripts. ‘Pithiviers' isolate-specific necrotic symptoms were obtained on when RNA-5-encoded p26 was expressed either from RNA-5 or from an RNA-3-derived replicon. By using haemagglutinin- and green fluorescent protein-tagged constructs, virally expressed p26-fusion proteins induced the same necrotic local lesions on host plants and were localized mainly in the nucleus of infected cells. Deletion mutagenesis permitted identification of two domains, responsible respectively for nuclear export and cytoplasmic retention of the p26 mutated proteins. By using a yeast two-hybrid system, Gal4DB–p26 protein self-activated transcription of the reporter gene. The p26 transcription-activation domain was located within its first 55 aa and has been studied by alanine scanning. Resulting p26 mutants were tested for their capability to induce necrotic symptoms and to localize in the nuclear compartment.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80937-0
2005-07-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/7/vir862115.html?itemId=/content/journal/jgv/10.1099/vir.0.80937-0&mimeType=html&fmt=ahah

References

  1. Banjoko, A. & Trelease, R. N. ( 1995; ). Development and application of an in vivo plant peroxisome import system. Plant Physiol 107, 1201–1208.[CrossRef]
    [Google Scholar]
  2. Bonner, W. M. ( 1978; ). Protein migration and accumulation in nuclei. In The Cell Nucleus, vol. 6, pp. 97–148. Edited by H. Busch. New York: Academic Press.
  3. Bruni, P., Minopoli, G., Brancaccio, T., Napolitano, M., Faraonio, R., Zambrano, N., Hansen, U. & Russo, T. ( 2002; ). Fe65, a ligand of the Alzheimer's β-amyloid precursor protein, blocks cell cycle progression by down-regulating thymidylate synthase expression. J Biol Chem 277, 35481–35488.[CrossRef]
    [Google Scholar]
  4. Canagarajah, B. J., Khokhlatchev, A., Cobb, M. H. & Goldsmith, E. J. ( 1997; ). Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90, 859–869.[CrossRef]
    [Google Scholar]
  5. Chiu, W., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H. & Sheen, J. ( 1996; ). Engineered GFP as a vital reporter in plants. Curr Biol 6, 325–330.[CrossRef]
    [Google Scholar]
  6. Cobb, M. H. & Goldsmith, E. J. ( 2000; ). Dimerization in MAP-kinase signaling. Trends Biochem Sci 25, 7–9.[CrossRef]
    [Google Scholar]
  7. Cousens, D. J., Greaves, R., Goding, C. R. & O'Hare, P. ( 1989; ). The C-terminal 79 amino acids of the herpes simplex virus regulatory protein, Vmw65, efficiently activate transcription in yeast and mammalian cells in chimeric DNA-binding proteins. EMBO J 8, 2337–2342.
    [Google Scholar]
  8. Dunoyer, P., Pfeffer, S., Fritsch, C., Hemmer, O., Voinnet, O. & Richards, K. E. ( 2002; ). Identification, subcellular localization and some properties of a cysteine-rich suppressor of gene silencing encoded by peanut clump virus. Plant J 29, 555–567.[CrossRef]
    [Google Scholar]
  9. Erhardt, M., Morant, M., Ritzenthaler, C., Stussi-Garaud, C., Guilley, H., Richards, K., Jonard, G., Bouzoubaa, S. & Gilmer, D. ( 2000; ). P42 movement protein of Beet necrotic yellow vein virus is targeted by the movement proteins P13 and P15 to punctate bodies associated with plasmodesmata. Mol Plant Microbe Interact 13, 520–528.[CrossRef]
    [Google Scholar]
  10. Gaire, F., Schmitt, C., Stussi-Garaud, C., Pinck, L. & Ritzenthaler, C. ( 1999; ). Protein 2A of grapevine fanleaf nepovirus is implicated in RNA2 replication and colocalizes to the replication site. Virology 264, 25–36.[CrossRef]
    [Google Scholar]
  11. Görlich, D. & Kutay, U. ( 1999; ). Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15, 607–660.[CrossRef]
    [Google Scholar]
  12. Görlich, D., Kraft, R., Kostka, S., Vogel, F., Hartmann, E., Laskey, R. A., Mattaj, I. W. & Izaurralde, E. ( 1996; ). Importin provides a link between nuclear protein import and U snRNA export. Cell 87, 21–32.[CrossRef]
    [Google Scholar]
  13. Haasen, D., Köhler, C., Neuhaus, G. & Merkle, T. ( 1999; ). Nuclear export of proteins in plants: AtXPO1 is the export receptor for leucine-rich nuclear export signals in Arabidopsis thaliana. Plant J 20, 695–705.[CrossRef]
    [Google Scholar]
  14. Heijbroek, W., Musters, P. M. S. & Schoone, A. H. L. ( 1999; ). Variation in pathenogenicity and multiplication of Beet necrotic yellow vein virus (BNYVV) in relation to the resistance of sugarbeet cultivars. Eur J Plant Pathol 105, 397–405.[CrossRef]
    [Google Scholar]
  15. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K. & Pease, L. R. ( 1989; ). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59.[CrossRef]
    [Google Scholar]
  16. Jupin, I., Guilley, H., Richards, K. E. & Jonard, G. ( 1992; ). Two proteins encoded by beet necrotic yellow vein virus RNA 3 influence symptom phenotype on leaves. EMBO J 11, 479–488.
    [Google Scholar]
  17. Kato, N., Lan, K.-H., Ono-Nita, S. K., Shiratori, Y. & Omata, M. ( 1997; ). Hepatitis C virus nonstructural region 5A protein is a potent transcriptional activator. J Virol 71, 8856–8859.
    [Google Scholar]
  18. Khokhlatchev, A. V., Canagarajah, B., Wilsbacher, J., Robinson, M., Atkinson, M., Goldsmith, E. & Cobb, M. H. ( 1998; ). Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93, 605–615.[CrossRef]
    [Google Scholar]
  19. Koenig, R., Haeberlé, A.-M. & Commandeur, U. ( 1997; ). Detection and characterization of a distinct type of beet necrotic yellow vein virus RNA 5 in a sugarbeet growing area in Europe. Arch Virol 142, 1499–1504.[CrossRef]
    [Google Scholar]
  20. Kozak, M. ( 2002; ). Pushing the limits of the scanning mechanism for initiation of translation. Gene 299, 1–34.[CrossRef]
    [Google Scholar]
  21. Lauber, E., Bleykasten-Grosshans, C., Erhardt, M., Bouzoubaa, S., Jonard, G., Richards, K. E. & Guilley, H. ( 1998a; ). Cell-to-cell movement of beet necrotic yellow vein virus: I. Heterologous complementation experiments provide evidence for specific interactions among the triple gene block proteins. Mol Plant Microbe Interact 11, 618–625.[CrossRef]
    [Google Scholar]
  22. Lauber, E., Guilley, H., Tamada, T., Richards, K. E. & Jonard, G. ( 1998b; ). Vascular movement of beet necrotic yellow vein virus in Beta macrocarpa is probably dependent on an RNA 3 sequence domain rather than a gene product. J Gen Virol 79, 385–393.
    [Google Scholar]
  23. Lombardo, E., Ramírez, J. C., Agbandje-McKenna, M. & Almendral, J. M. ( 2000; ). A beta-stranded motif drives capsid protein oligomers of the parvovirus minute virus of mice into the nucleus for viral assembly. J Virol 74, 3804–3814.[CrossRef]
    [Google Scholar]
  24. Lombardo, E., Ramírez, J. C., Garcia, J. & Almendral, J. M. ( 2002; ). Complementary roles of multiple nuclear targeting signals in the capsid proteins of the parvovirus minute virus of mice during assembly and onset of infection. J Virol 76, 7049–7059.[CrossRef]
    [Google Scholar]
  25. Mattaj, I. W. & Englmeier, L. ( 1998; ). Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67, 265–306.[CrossRef]
    [Google Scholar]
  26. Minopoli, G., de Candia, P., Bonetti, A., Faraonio, R., Zambrano, N. & Russo, T. ( 2001; ). The β-amyloid precursor protein functions as a cytosolic anchoring site that prevents Fe65 nuclear translocation. J Biol Chem 276, 6545–6550.[CrossRef]
    [Google Scholar]
  27. Miyanishi, M., Kusume, T., Saito, M. & Tamada, T. ( 1999; ). Evidence for three groups of sequence variants of beet necrotic yellow vein virus RNA 5. Arch Virol 144, 879–892.[CrossRef]
    [Google Scholar]
  28. Nikolaev, A. Y., Li, M., Puskas, N., Qin, J. & Gu, W. ( 2003; ). Parc: a cytoplasmic anchor for p53. Cell 112, 29–40.[CrossRef]
    [Google Scholar]
  29. Okamura, H., Aramburu, J., García-Rodríguez, C. & 7 other authors ( 2000; ). Concerted dephosphorylation of the transcription factor NFAT1 induces a conformational switch that regulates transcriptional activity. Mol Cell 6, 539–550.[CrossRef]
    [Google Scholar]
  30. Paine, P. L., Moore, L. C. & Horowitz, S. B. ( 1975; ). Nuclear envelope permeability. Nature 254, 109–114.[CrossRef]
    [Google Scholar]
  31. Quillet, L., Guilley, H., Jonard, G. & Richards, K. ( 1989; ). In vitro synthesis of biologically active beet necrotic yellow vein virus RNA. Virology 172, 293–301.[CrossRef]
    [Google Scholar]
  32. Reichel, C., Mathur, J., Eckes, P., Langenkemper, K., Koncz, C., Schell, J., Reiss, B. & Maas, C. ( 1996; ). Enhanced green fluorescence by the expression of an Aequorea victoria green fluorescent protein mutant in mono- and dicotyledonous plant cells. Proc Natl Acad Sci U S A 93, 5888–5893.[CrossRef]
    [Google Scholar]
  33. Rhee, Y., Gurel, F., Gafni, Y., Dingwall, C. & Citovsky, V. ( 2000; ). A genetic system for detection of protein nuclear import and export. Nat Biotechnol 18, 433–437.[CrossRef]
    [Google Scholar]
  34. Ryabova, L. A., Pooggin, M. M. & Hohn, T. ( 2002; ). Viral strategies of translation initiation: ribosomal shunt and reinitiation. Prog Nucleic Acid Res Mol Biol 72, 1–39.
    [Google Scholar]
  35. Sadowski, I., Ma, J., Triezenberg, S. & Ptashne, M. ( 1988; ). GAL4-VP16 is an unusually potent transcriptional activator. Nature 335, 563–564.[CrossRef]
    [Google Scholar]
  36. Salazar, C. & Höfer, T. ( 2003; ). Allosteric regulation of the transcription factor NFAT1 by multiple phosphorylation sites: a mathematical analysis. J Mol Biol 327, 31–45.[CrossRef]
    [Google Scholar]
  37. Salazar, C. & Höfer, T. ( 2005; ). Activation of the transcription factor NFAT1: concerted or modular regulation? FEBS Lett 579, 621–626.[CrossRef]
    [Google Scholar]
  38. Schmidlin, L., Link, D., Mutterer, J., Guilley, H. & Gilmer, D. ( 2005; ). Use of a Beet necrotic yellow vein virus RNA-5-derived replicon as a new tool for gene expression. J Gen Virol 86, 463–467.[CrossRef]
    [Google Scholar]
  39. Song, J., Nagano-Fujii, M., Wang, F., Florese, R., Fujita, T., Ishido, S. & Hotta, H. ( 2000; ). Nuclear localization and intramolecular cleavage of N-terminally deleted NS5A protein of hepatitis C virus. Virus Res 69, 109–117.[CrossRef]
    [Google Scholar]
  40. Szurek, B., Marois, E., Bonas, U. & Van den Ackerveken, G. ( 2001; ). Eukaryotic features of the Xanthomonas type III effector AvrBs3: protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper. Plant J 26, 523–534.[CrossRef]
    [Google Scholar]
  41. Tamada, T. ( 1999; ). Benyviruses. In Encyclopedia of Virology, 2nd edn, pp. 154–160. London: Academic Press.
  42. Tamada, T. & Abe, H. ( 1989; ). Evidence that beet necrotic yellow vein virus RNA-4 is essential for transmission by the fungus Polymyxa betae. J Gen Virol 70, 3391–3398.[CrossRef]
    [Google Scholar]
  43. Tamada, T., Shirako, Y., Abe, H., Saito, M., Kigushi, T. & Harada, T. ( 1989; ). Production and pathogenicity of isolates of beet necrotic yellow vein virus with different numbers of RNA components. J Gen Virol 70, 3399–3409.[CrossRef]
    [Google Scholar]
  44. Tamada, T., Kusume, T., Uchino, H., Kigushi, T. & Saito, M. ( 1996a; ). Evidence that beet necrotic yellow vein virus RNA-5 is involved in symptom development of sugar beet root. In Proceedings of the Third Symposium of the International Working Group on Plant Viruses with Fungal Vectors, pp. 49–52. Edited by J. L. Sherwood & C. M. Rush. Denver: American Society of Sugar Beet Technologists.
  45. Tamada, T., Schmitt, C., Saito, M., Guilley, H., Richards, K. & Jonard, G. ( 1996b; ). High resolution analysis of the readthrough domain of beet necrotic yellow vein virus readthrough protein: a KTER motif is important for efficient transmission of the virus by Polymyxa betae. J Gen Virol 77, 1359–1367.[CrossRef]
    [Google Scholar]
  46. Tamada, T., Uchino, H., Kusume, T. & Saito, M. ( 1999; ). RNA 3 deletion mutants of beet necrotic yellow vein virus do not cause rhizomania disease in sugar beets. Phytopathology 89, 1000–1006.[CrossRef]
    [Google Scholar]
  47. Tanimoto, A., Ide, Y., Arima, N., Sasaguri, Y. & Padmanabhan, R. ( 1997; ). The amino terminal deletion mutants of hepatitis C virus nonstructural protein NS5A function as transcriptional activators in yeast. Biochem Biophys Res Commun 236, 360–364.[CrossRef]
    [Google Scholar]
  48. Telese, F., Bruni, P., Donizetti, A., Gianni, D., D'Ambrosio, C., Scaloni, A., Zambrano, N., Rosenfeld, M. G. & Russo, T. ( 2005; ). Transcription regulation by the adaptor protein Fe65 and the nucleosome assembly factor SET. EMBO Rep 6, 77–82.[CrossRef]
    [Google Scholar]
  49. Vetter, G., Hily, J.-M., Klein, E., Schmidlin, L., Haas, M., Merkle, T. & Gilmer, D. ( 2004; ). Nucleo-cytoplasmic shuttling of the beet necrotic yellow vein virus RNA-3-encoded p25 protein. J Gen Virol 85, 2459–2469.[CrossRef]
    [Google Scholar]
  50. Yang, J., Aittomäki, S., Pesu, M., Carter, K., Saarinen, J., Kalkkinen, N., Kieff, E. & Silvennoinen, O. ( 2002; ). Identification of p100 as a coactivator for STAT6 that bridges STAT6 with RNA polymerase II. EMBO J 21, 4950–4958.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80937-0
Loading
/content/journal/jgv/10.1099/vir.0.80937-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error