1887

Abstract

Human cytomegalovirus (HCMV) resistance to antivirals is a significant clinical problem. Murine cytomegalovirus (MCMV) infection of mice is a well-described animal model for studies of CMV pathogenesis, although the mechanisms of MCMV antiviral susceptibility need elucidation. Mutants resistant to nucleoside analogues aciclovir, adefovir, cidofovir, ganciclovir, penciclovir and valaciclovir, and the pyrophosphate analogue foscarnet were generated by passage of MCMV (Smith) in increasing concentrations of antiviral. All MCMV antiviral resistant mutants contained DNA polymerase mutations identical or similar to HCMV DNA polymerase mutations known to confer antiviral resistance. Mapping of the mutations onto an MCMV DNA polymerase three-dimensional model generated using the Tgo polymerase crystal structure showed that the DNA polymerase mutations potentially confer resistance through changes in regions surrounding a catalytic aspartate triad. The ganciclovir-, penciclovir- and valaciclovir-resistant isolates also contained mutations within MCMV M97 identical or similar to recognized GCV-resistant mutations of HCMV UL97 protein kinase, and demonstrated cross-resistance to antivirals of the same class. This strongly suggests that MCMV M97 has a similar role to HCMV UL97 in the phosphorylation of nucleoside analogue antivirals. All MCMV mutants demonstrated replication-impaired phenotypes, with the lowest titre and plaque size observed for isolates containing mutations in both DNA polymerase and M97. These findings indicate DNA polymerase and protein kinase regions of potential importance for antiviral susceptibility and replication. The similarities between MCMV and HCMV mutations that arise under antiviral selective pressure increase the utility of MCMV as a model for studies of CMV antiviral resistance.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80910-0
2005-08-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/8/vir862141.html?itemId=/content/journal/jgv/10.1099/vir.0.80910-0&mimeType=html&fmt=ahah

References

  1. Biron, K. K., Stanat, S. C., Sorrell, J. B., Fyfe, J. A., Keller, P. M., Lambe, C. U. & Nelson, D. J. ( 1985; ). Metabolic activation of the nucleoside analog 9-[(2-hydroxy-1-(hydroxymethyl)ethoxy]methyl)guanine in human diploid fibroblasts infected with the human cytomegalovirus. Proc Natl Acad Sci U S A 82, 2473–2477.[CrossRef]
    [Google Scholar]
  2. Boyd, M. R., Safrin, S. & Kern, E. R. ( 1993; ). Penciclovir: a review of its spectrum of activity, selectivity, and cross-resistance pattern. Antivir Chem Chemother 4, S3–S11.
    [Google Scholar]
  3. Burnette, T. C., Harrington, J. A., Reardon, J. E., Merrill, B. M. & de Miranda, P. ( 1995; ). Purification and characterization of a rat liver enzyme that hydrolyzes valaciclovir, the l-valyl ester prodrug of acyclovir. J Biol Chem 270, 15827–15831.[CrossRef]
    [Google Scholar]
  4. Burns, W. H., Wingard, J. R., Bender, W. J. & Saral, R. ( 1981; ). Thymidine kinase not required for antiviral activity of acyclovir against mouse cytomegalovirus. J Virol 39, 889–893.
    [Google Scholar]
  5. Chee, M. S., Lawrence, G. L. & Barrell, B. G. ( 1989; ). Alpha-, beta- and gammaherpesviruses encode a putative phosphotransferase. J Gen Virol 70, 1151–1160.[CrossRef]
    [Google Scholar]
  6. Chee, M. S., Bankier, A. T., Beck, S. & 12 other authors ( 1990; ). Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154, 125–169.
    [Google Scholar]
  7. Chou, S. ( 1999; ). Antiviral drug resistance in human cytomegalovirus. Transpl Infect Dis 1, 105–114.[CrossRef]
    [Google Scholar]
  8. Chou, S., Erice, A., Jordan, M. C., Vercellotti, G. M., Michels, K. R., Talarico, C. L., Stanat, S. C. & Biron, K. K. ( 1995; ). Analysis of the UL97 phosphotransferase coding sequence in clinical cytomegalovirus isolates and identification of mutations conferring ganciclovir resistance. J Infect Dis 171, 576–583.[CrossRef]
    [Google Scholar]
  9. Chou, S., Lurain, N. S., Weinberg, A., Cai, G. Y., Sharma, P. L. & Crumpacker, C. S. ( 1999; ). Interstrain variation in the human cytomegalovirus DNA polymerase sequence and its effect on genotypic diagnosis of antiviral drug resistance. Antimicrob Agents Chemother 43, 1500–1502.
    [Google Scholar]
  10. Chou, S., Lurain, N. S., Thompson, K. D., Miner, R. C. & Drew, W. L. ( 2003; ). Viral DNA polymerase mutations associated with drug resistance in human cytomegalovirus. J Infect Dis 188, 32–39.[CrossRef]
    [Google Scholar]
  11. Chrisp, P. & Clissold, S. ( 1991; ). Foscarnet. A review of its antiviral activity, pharmokinetic properties, and therapeutic use in immunocompromised patients with cytomegalovirus retinitis. Drugs 41, 104–129.[CrossRef]
    [Google Scholar]
  12. Cihlar, T., Fuller, M. D. & Cherrington, J. M. ( 1998a; ). Characterisation of drug resistance-associated mutations in the human cytomegalovirus DNA polymerase gene by using recombinant mutant viruses generated from overlapping DNA fragments. J Virol 72, 5927–5936.
    [Google Scholar]
  13. Cihlar, T., Fuller, M. D., Mulato, A. S. & Cherrington, J. M. ( 1998b; ). A point mutation in the human cytomegalovirus DNA polymerase gene selected in vitro by cidofivir confers a slow replication phenotype in cell culture. Virology 248, 382–393.[CrossRef]
    [Google Scholar]
  14. Cole, N. L. & Balfour, H. H., Jr ( 1987; ). In vitro susceptibility of cytomegalovirus isolates from immunocompromised patients to acyclovir and ganciclovir. Diagn Microbiol Infect Dis 6, 255–261.[CrossRef]
    [Google Scholar]
  15. De Clercq, E. ( 2001; ). Antiviral drugs: current state of the art. J Clin Virol 22, 73–89.[CrossRef]
    [Google Scholar]
  16. Elliott, R., Clark, C., Jaquish, D. & Spector, D. H. ( 1991; ). Transcription analysis and sequence of the putative murine cytomegalovirus DNA polymerase gene. Virology 185, 169–186.[CrossRef]
    [Google Scholar]
  17. Erice, A. ( 1999; ). Resistance of human cytomegalovirus to antiviral drugs. Clin Microbiol Rev 12, 286–297.
    [Google Scholar]
  18. Feinberg, J. E., Hurwitz, S., Cooper, D. & 14 other authors ( 1998; ). A randomized, double-blind trial of valaciclovir prophylaxis for cytomegalovirus disease in patients with advanced human immunodeficiency virus infection. J Infect Dis 177, 48–56.[CrossRef]
    [Google Scholar]
  19. Han, H., de Vrueh, R. L., Rhie, J. K., Covitz, K. M., Smith, P. L., Lee, C. P., Oh, D. M., Sadee, W. & Amidon, G. L. ( 1998; ). 5′-Amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter. Pharm Res 15, 1154–1159.[CrossRef]
    [Google Scholar]
  20. Hanks, S. K. & Quinn, A. M. ( 1991; ). Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol 200, 38–62.
    [Google Scholar]
  21. Hanks, S. K. & Hunter, T. ( 1995; ). Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9, 576–596.
    [Google Scholar]
  22. Hopfner, K. P., Eichinger, A., Engh, R. A., Laue, F., Ankenbauer, W., Huber, R. & Angerer, B. ( 1999; ). Crystal structure of a thermostable type B DNA polymerase from Thermococcus gorgonarius. Proc Natl Acad Sci U S A 96, 3600–3605.[CrossRef]
    [Google Scholar]
  23. Huang, L., Ishii, K. K., Zuccola, H., Gehring, A. M., Hwang, C. B. C., Hogle, J. & Coen, D. M. ( 1999; ). The enzymological basis for resistance of herpesvirus DNA polymerase mutants to aciclovir: relationship to the structure of alpha-like DNA polymerases. Proc Natl Acad Sci U S A 96, 447–452.[CrossRef]
    [Google Scholar]
  24. Hudson, J. B. ( 1979; ). The murine cytomegalovirus as a model for the study of viral pathogenesis and persistent infections. Arch Virol 62, 1–29.[CrossRef]
    [Google Scholar]
  25. Hwang, C. B., Ruffner, K. L. & Coen, D. M. ( 1992; ). A point mutation within a distinct conserved region of the herpes simplex virus DNA polymerase gene confers drug resistance. J Virol 66, 1774–1776.
    [Google Scholar]
  26. Ihara, S., Takekoshi, M., Mori, N., Sakuma, S., Hashimoto, J. & Watanabe, Y. ( 1994; ). Identification of mutation sites of a temperature-sensitive mutant of HCMV DNA polymerase activity. Arch Virol 137, 263–275.[CrossRef]
    [Google Scholar]
  27. Jabs, D. A., Martin, B. K., Forman, M. S., Dunn, J. P., Davis, J. L., Weinberg, D. V., Biron, K. K. & Baldanti, F. ( 2001; ). Mutations conferring ganciclovir resistance in a cohort of patients with acquired immunodeficiency syndrome and cytomegalovirus retinitis. J Infect Dis 183, 333–337.[CrossRef]
    [Google Scholar]
  28. Kariya, M., Mori, S. & Eizuru, Y. ( 2000; ). Comparison of human cytomegalovirus DNA polymerase activity for ganciclovir-resistant and -sensitive clinical strains. Antiviral Res 45, 115–122.[CrossRef]
    [Google Scholar]
  29. Koffron, A. J., Hummel, M., Patterson, B. K., Yan, S., Kaufman, D. B., Fryer, J. P., Stuart, F. P. & Abecassis, M. I. ( 1998; ). Cellular localization of latent murine cytomegalovirus. J Virol 72, 95–103.
    [Google Scholar]
  30. Lagenaur, L. A., Manning, W. C., Vieira, J., Martens, C. L. & Mocarski, E. S. ( 1994; ). Structure and function of the murine cytomegalovirus sgg1 gene: a determinant of viral growth in salivary gland acinar cells. J Virol 68, 7717–7727.
    [Google Scholar]
  31. Landowski, C. P., Sun, D., Foster, D. R., Menon, S. S., Barnett, J. L., Welage, L. S., Ramachandran, C. & Amidon, G. L. ( 2003; ). Gene expression in the human intestine and correlation with oral valacyclovir pharmacokinetic parameters. J Pharmacol Exp Ther 306, 778–786.[CrossRef]
    [Google Scholar]
  32. Littler, E., Stuart, A. D. & Chee, M. S. ( 1992; ). Human cytomegalovirus UL97 open reading frame encodes a protein that phosphorylates the antiviral nucleoside analogue ganciclovir. Nature 358, 160–162.[CrossRef]
    [Google Scholar]
  33. Lowance, D., Neumayer, H.-H., Legendre, C. M. & 9 other authors ( 1999; ). Valacyclovir for the prevention of cytomegalovirus disease after renal transplantation. N Engl J Med 340, 1462–1470.[CrossRef]
    [Google Scholar]
  34. Lurain, N. S., Thompson, K. D., Holmes, E. W. & Read, G. S. ( 1992; ). Point mutations in the DNA polymerase gene of human cytomegalovirus that result in resistance to antiviral agents. J Virol 66, 7146–7152.
    [Google Scholar]
  35. Luthy, R., Bowie, J. U. & Eisenberg, D. ( 1992; ). Assessment of protein models with three-dimensional profiles. Nature 356, 83–85.[CrossRef]
    [Google Scholar]
  36. Minematsu, T., Mori, S., Eizuru, Y. & Minamishima, Y. ( 2001; ). Isolation and analysis of an aciclovir-resistant murine cytomegalovirus mutant. Antiviral Res 49, 25–33.[CrossRef]
    [Google Scholar]
  37. Ochiai, H., Kumura, K. & Minamishima, Y. ( 1992; ). Murine cytomegalovirus DNA polymerase: purification, characterization and role in the antiviral activity of acyclovir. Antiviral Res 17, 1–16.[CrossRef]
    [Google Scholar]
  38. Rawlinson, W. D. ( 2001; ). Antiviral agents for influenza, hepatitis C and herpesvirus, enterovirus and rhinovirus infections. Med J Aust 175, 112–116.
    [Google Scholar]
  39. Rawlinson, W., Farrell, H. & Barrell, B. ( 1993; ). Global comparison of the DNA sequences of HCMV (AD169) and MCMV (Smith) preliminary analysis. In Multidisciplinary Approach to Understanding Cytomegalovirus Disease, pp. 55–62. Edited by M. S. & S. Plotkin. Elsevier Science Publishers BV.
  40. Rawlinson, W. D., Farrell, H. E. & Barrell, B. G. ( 1996; ). Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol 70, 8833–8849.
    [Google Scholar]
  41. Rawlinson, W. D., Zeng, F., Farrell, H. E., Cunningham, A. L., Scalzo, A. A., Booth, T. W. & Scott, G. M. ( 1997; ). The murine cytomegalovirus (MCMV) homolog of the HCMV phosphotransferase (UL97(pk)) gene. Virology 233, 358–363.[CrossRef]
    [Google Scholar]
  42. Rodriguez, A. C., Park, H. W., Mao, C. & Beese, L. S. ( 2000; ). Crystal structure of a Pol a family DNA polymerase from the hyperthermophilic Archaeon Thermococcus sp. 9°N-7. J Mol Biol 299, 469–477.
    [Google Scholar]
  43. Schmit, I. & Boivin, G. ( 1999; ). Characterization of the DNA polymerase and thymidine kinase genes of herpes simplex virus isolates from AIDS patients in whom acyclovir and foscarnet therapy sequentially failed. J Infect Dis 180, 487–490.[CrossRef]
    [Google Scholar]
  44. Scott, G. M., Ratnamohan, V. M. & Rawlinson, W. D. ( 2000; ). Improving permissive infection of human cytomegalovirus in cell culture. Arch Virol 145, 2431–2438.[CrossRef]
    [Google Scholar]
  45. Scott, G. M., Barrell, B. G., Oram, J. & Rawlinson, W. D. ( 2002; ). Characterisation of transcripts from the human cytomegalovirus genes TRL7, UL20a, UL36, UL65, UL94, US3 and US34. Virus Genes 24, 39–48.[CrossRef]
    [Google Scholar]
  46. Scott, G. M., Isaacs, M. A., Zeng, F., Kesson, A. M. & Rawlinson, W. D. ( 2004; ). Cytomegalovirus antiviral resistance associated with treatment induced UL97 (protein kinase) and UL54 (DNA polymerase) mutations. J Med Virol 74, 85–93.[CrossRef]
    [Google Scholar]
  47. Smee, D. F., Barnett, B. B., Sidwell, R. W., Reist, E. J. & Holy, A. ( 1995; ). Antiviral activities of nucleosides and nucleotides against wild-type and drug-resistant strains of murine cytomegalovirus. Antiviral Res 26, 1–9.[CrossRef]
    [Google Scholar]
  48. Smith, I. L., Cherrington, J. M., Jiles, R. E., Fuller, M. D., Freeman, W. R. & Spector, S. A. ( 1997; ). High-level resistance of cytomegalovirus to ganciclovir is associated with alterations in both the UL97 and DNA polymerase genes. J Infect Dis 176, 69–77.[CrossRef]
    [Google Scholar]
  49. Stryer, L. ( 1988; ). Biochemistry, 3rd edn. New York: W. H. Freeman & Co.
  50. Sullivan, V., Talarico, C., Stanat, S. C., Davis, M., Coen, D. M. & Biron, K. K. ( 1992; ). A protein kinase homologue controls phosphorylation of ganciclovir in human cytomegalovirus-infected cells. Nature 358, 162–164.[CrossRef]
    [Google Scholar]
  51. Sullivan, V., Biron, K. K., Talarico, C., Stanat, S. C., Davis, M., Pozzi, L. M. & Coen, D. M. ( 1993; ). A point mutation in the human cytomegalovirus DNA polymerase gene confers resistance to ganciclovir and phosphonylmethoxyalkyl derivatives. Antimicrob Agents Chemother 37, 19–25.[CrossRef]
    [Google Scholar]
  52. Talarico, C. L., Burnette, T. C., Miller, W. H. & 8 other authors ( 1999; ). Acyclovir is phosphorylated by the human cytomegalovirus UL97 protein. Antimicrob Agents Chemother 43, 1941–1946.
    [Google Scholar]
  53. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  54. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  55. Visse, B., Huraux, J.-M. & Fillet, A.-M. ( 1999; ). Point mutations in the varicella-zoster virus DNA polymerase gene confers resistance to foscarnet and slow growth phenotype. J Med Virol 59, 84–90.[CrossRef]
    [Google Scholar]
  56. Wagner, M., Michel, D., Schaarschmidt, P., Vaida, B., Jonjic, S., Messerle, M., Mertens, T. & Koszinowski, U. ( 2000; ). Comparison between human cytomegalovirus pUL97 and murine cytomegalovirus (MCMV) pM97 expressed by MCMV and vaccinia virus: pM97 does not confer ganciclovir sensitivity. J Virol 74, 10729–10736.[CrossRef]
    [Google Scholar]
  57. Xiong, X., Flores, C., Fuller, M. D., Mendel, D. B., Mulato, A. S., Moon, K., Chen, M. S. & Cherrington, J. M. ( 1997a; ). In vitro characterization of the anti-human cytomegalovirus activity of PMEA (adefovir). Antiviral Res 36, 131–137.[CrossRef]
    [Google Scholar]
  58. Xiong, X., Smith, J. L. & Chen, M. S. ( 1997b; ). Effect of incorporation of cidofovir into DNA by human cytomegalovirus DNA polymerase on DNA elongation. Antimicrob Agents Chemother 41, 594–599.
    [Google Scholar]
  59. Ye, L.-B. & Huang, E.-S. ( 1993; ). In vitro expression of human cytomegalovirus DNA polymerase gene: effects of sequence alterations on enzyme activity. J Virol 67, 6339–6347.
    [Google Scholar]
  60. Yuhasz, S. A., Dissette, V. B., Cook, M. L. & Stevens, J. G. ( 1994; ). Murine cytomegalovirus is present in both chronic active and latent states in persistently infected mice. Virology 202, 272–280.[CrossRef]
    [Google Scholar]
  61. Zimmerman, A., Michel, D., Pavic, I., Hampl, W., Luske, A., Neyts, J., De Clercq, E. & Mertens, T. ( 1997; ). Phosphorylation of aciclovir, ganciclovir, penciclovir and S2242 by the cytomegalovirus UL97 protein: a quantitative analysis using recombinant vaccinia viruses. Antiviral Res 36, 35–42.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80910-0
Loading
/content/journal/jgv/10.1099/vir.0.80910-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error