RT Journal Article SR Electronic(1) A1 Scott, G. M. A1 Ng, H.-L. A1 Morton, C. J. A1 Parker, M. W. A1 Rawlinson, W. D.YR 2005 T1 Murine cytomegalovirus resistant to antivirals has genetic correlates with human cytomegalovirus JF Journal of General Virology, VO 86 IS 8 SP 2141 OP 2151 DO https://doi.org/10.1099/vir.0.80910-0 PB Microbiology Society, SN 1465-2099, AB Human cytomegalovirus (HCMV) resistance to antivirals is a significant clinical problem. Murine cytomegalovirus (MCMV) infection of mice is a well-described animal model for in vivo studies of CMV pathogenesis, although the mechanisms of MCMV antiviral susceptibility need elucidation. Mutants resistant to nucleoside analogues aciclovir, adefovir, cidofovir, ganciclovir, penciclovir and valaciclovir, and the pyrophosphate analogue foscarnet were generated by in vitro passage of MCMV (Smith) in increasing concentrations of antiviral. All MCMV antiviral resistant mutants contained DNA polymerase mutations identical or similar to HCMV DNA polymerase mutations known to confer antiviral resistance. Mapping of the mutations onto an MCMV DNA polymerase three-dimensional model generated using the Thermococcus gorgonarius Tgo polymerase crystal structure showed that the DNA polymerase mutations potentially confer resistance through changes in regions surrounding a catalytic aspartate triad. The ganciclovir-, penciclovir- and valaciclovir-resistant isolates also contained mutations within MCMV M97 identical or similar to recognized GCV-resistant mutations of HCMV UL97 protein kinase, and demonstrated cross-resistance to antivirals of the same class. This strongly suggests that MCMV M97 has a similar role to HCMV UL97 in the phosphorylation of nucleoside analogue antivirals. All MCMV mutants demonstrated replication-impaired phenotypes, with the lowest titre and plaque size observed for isolates containing mutations in both DNA polymerase and M97. These findings indicate DNA polymerase and protein kinase regions of potential importance for antiviral susceptibility and replication. The similarities between MCMV and HCMV mutations that arise under antiviral selective pressure increase the utility of MCMV as a model for in vivo studies of CMV antiviral resistance., UL https://www.microbiologyresearch.org/content/journal/jgv/10.1099/vir.0.80910-0