1887

Abstract

Post-translational modifications and correct subcellular localization of viral structural proteins are prerequisites for assembly and budding of enveloped viruses. Coronaviruses, like the severe acute respiratory syndrome-associated virus (SARS-CoV), bud from the endoplasmic reticulum-Golgi intermediate compartment. In this study, the subcellular distribution and maturation of SARS-CoV surface proteins S, M and E were analysed by using C-terminally tagged proteins. As early as 30 min post-entry into the endoplasmic reticulum, high-mannosylated S assembles into trimers prior to acquisition of complex -glycans in the Golgi. Like S, M acquires high-mannose -glycans that are subsequently modified into complex -glycans in the Golgi. The -glycosylation profile and the absence of -glycosylation on M protein relate SARS-CoV to the previously described group 1 and 3 coronaviruses. Immunofluorescence analysis shows that S is detected in several compartments along the secretory pathway from the endoplasmic reticulum to the plasma membrane while M predominantly localizes in the Golgi, where it accumulates, and in trafficking vesicles. The E protein is not glycosylated. Pulse-chase labelling and confocal microscopy in the presence of protein translation inhibitor cycloheximide revealed that the E protein has a short half-life of 30 min. E protein is found in bright perinuclear patches colocalizing with endoplasmic reticulum markers. In conclusion, SARS-CoV surface proteins S, M and E show differential subcellular localizations when expressed alone suggesting that additional cellular or viral factors might be required for coordinated trafficking to the virus assembly site in the endoplasmic reticulum-Golgi intermediate compartment.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80671-0
2005-05-01
2020-05-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/5/vir861423.html?itemId=/content/journal/jgv/10.1099/vir.0.80671-0&mimeType=html&fmt=ahah

References

  1. Appenzeller C., Andersson H., Kappeler F., Hauri H. P. 1999; The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nat Cell Biol 1:330–334 [CrossRef]
    [Google Scholar]
  2. Arbely E., Khattari Z., Brotons G., Akkawi M., Salditt T., Arkin I. T. 2004; A highly unusual palindromic transmembrane helical hairpin formed by SARS coronavirus E protein. J Mol Biol 341:769–779 [CrossRef]
    [Google Scholar]
  3. Baudoux P., Carrat C., Besnardeau L., Charley B., Laude H. 1998a; Coronavirus pseudoparticles formed with recombinant M and E proteins induce alpha interferon synthesis by leukocytes. J Virol 72:8636–8643
    [Google Scholar]
  4. Baudoux P., Besnardeau L., Carrat C., Rottier P., Charley B., Laude H. 1998b; Interferon alpha inducing property of coronavirus particles and pseudoparticles. Adv Exp Med Biol 440:377–386
    [Google Scholar]
  5. Bos E. C., Luytjes W., van der Meulen H. V., Koerten H. K., Spaan W. J. 1996; The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus. Virology 218:52–60 [CrossRef]
    [Google Scholar]
  6. Bosch B. J., van der Zee R., de Haan C. A., Rottier P. J. 2003; The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 77:8801–8811 [CrossRef]
    [Google Scholar]
  7. Buchholz U. J., Bukreyev A., Yang L., Lamirande E. W., Murphy B. R., Subbarao K., Collins P. L. 2004; Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc Natl Acad Sci U S A 101:9804–9809 [CrossRef]
    [Google Scholar]
  8. Bukreyev A., Lamirande E. W., Buchholz U. J., Vogel L. N., Elkins W. R., St Claire M., Murphy B. R., Subbarao K., Collins P. L. 2004; Mucosal immunisation of African green monkeys ( Cercopithecus aethiops ) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet 363:2122–2127 [CrossRef]
    [Google Scholar]
  9. Corse E., Machamer C. E. 2000; Infectious bronchitis virus E protein is targeted to the Golgi complex and directs release of virus-like particles. J Virol 74:4319–4326 [CrossRef]
    [Google Scholar]
  10. Corse E., Machamer C. E. 2002; The cytoplasmic tail of infectious bronchitis virus E protein directs Golgi targeting. J Virol 76:1273–1284 [CrossRef]
    [Google Scholar]
  11. Corse E., Machamer C. E. 2003; The cytoplasmic tails of infectious bronchitis virus E and M proteins mediate their interaction. Virology 312:25–34 [CrossRef]
    [Google Scholar]
  12. de Haan C. A., Smeets M., Vernooij F., Vennema H., Rottier P. J. 1999; Mapping of the coronavirus membrane protein domains involved in interaction with the spike protein. J Virol 73:7441–7452
    [Google Scholar]
  13. de Haan C. A., Vennema H., Rottier P. J. 2000; Assembly of the coronavirus envelope: homotypic interactions between the M proteins. J Virol 74:4967–4978 [CrossRef]
    [Google Scholar]
  14. de Haan C. A., de Wit M., Kuo L., Montalto-Morrison C., Haagmans B. L., Weiss S. R., Masters P. S., Rottier P. J. 2003; The glycosylation status of the murine hepatitis coronavirus M protein affects the interferogenic capacity of the virus in vitro and its ability to replicate in the liver but not the brain. Virology 312:395–406 [CrossRef]
    [Google Scholar]
  15. de Haan C. A., Stadler K., Godeke G. J., Bosch B. J., Rottier P. J. 2004; Cleavage inhibition of the murine coronavirus spike protein by a furin-like enzyme affects cell-cell but not virus-cell fusion. J Virol 78:6048–6054 [CrossRef]
    [Google Scholar]
  16. Delmas B., Laude H. 1990; Assembly of coronavirus spike protein into trimers and its role in epitope expression. J Virol 64:5367–5375
    [Google Scholar]
  17. Delmas B., Gelfi J., L'Haridon R., Vogel L. K., Sjostrom H., Noren O., Laude H. 1992; Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 357:417–420 [CrossRef]
    [Google Scholar]
  18. de Vries A. A., Raamsman M. J., van Dijk H. A., Horzinek M. C., Rottier P. J. 1995; The small envelope glycoprotein (GS) of equine arteritis virus folds into three distinct monomers and a disulfide-linked dimer. J Virol 69:3441–3448
    [Google Scholar]
  19. Escors D., Ortego J., Enjuanes L. 2001a; The membrane M protein of the transmissible gastroenteritis coronavirus binds to the internal core through the carboxy-terminus. Adv Exp Med Biol 494:589–593
    [Google Scholar]
  20. Escors D., Camafeita E., Ortego J., Laude H., Enjuanes L. 2001b; Organization of two transmissible gastroenteritis coronavirus membrane protein topologies within the virion and core. J Virol 75:12228–12240 [CrossRef]
    [Google Scholar]
  21. Fischer F., Stegen C. F., Masters P. S., Samsonoff W. A. 1998; Analysis of constructed E gene mutants of mouse hepatitis virus confirms a pivotal role for E protein in coronavirus assembly. J Virol 72:7885–7894
    [Google Scholar]
  22. Godet M., L'Haridon R., Vautherot J. F., Laude H. 1992; TGEV corona virus ORF4 encodes a membrane protein that is incorporated into virions. Virology 188:666–675 [CrossRef]
    [Google Scholar]
  23. Helenius A., Aebi M. 2001; Intracellular functions of N-linked glycans. Science 291:2364–2369 [CrossRef]
    [Google Scholar]
  24. Hofmann H., Geier M., Marzi A., Krumbiegel M., Peipp M., Fey G. H., Gramberg T., Pohlmann S. 2004a; Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem Biophys Res Commun 319:1216–1221 [CrossRef]
    [Google Scholar]
  25. Hofmann H., Hattermann K., Marzi A. 7 other authors 2004b; S protein of severe acute respiratory syndrome-associated coronavirus mediates entry into hepatoma cell lines and is targeted by neutralizing antibodies in infected patients. J Virol 78:6134–6142 [CrossRef]
    [Google Scholar]
  26. Klumperman J., Locker J. K., Meijer A., Horzinek M. C., Geuze H. J., Rottier P. J. 1994; Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding. J Virol 68:6523–6534
    [Google Scholar]
  27. Krokhin O., Li Y., Andonov A. 13 other authors 2003; Mass spectrometric characterization of proteins from the SARS virus: a preliminary report. Mol Cell Proteomics 2:346–356
    [Google Scholar]
  28. Kuiken T., Fouchier R. A., Schutten M. 19 other authors 2003; Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362:263–270 [CrossRef]
    [Google Scholar]
  29. Laude H., Van Reeth K., Pensaert M. 1993; Porcine respiratory coronavirus: molecular features and virus-host interactions. Vet Res 24:125–150
    [Google Scholar]
  30. Li W., Moore M. J., Vasilieva N. 9 other authors 2003; Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454 [CrossRef]
    [Google Scholar]
  31. Liljestrom P., Garoff H. 1991; A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology (N Y) 9:1356–1361 [CrossRef]
    [Google Scholar]
  32. Lim K. P., Liu D. X. 2001; The missing link in coronavirus assembly. Retention of the avian coronavirus infectious bronchitis virus envelope protein in the pre-Golgi compartments and physical interaction between the envelope and membrane proteins. J Biol Chem 276:17515–17523 [CrossRef]
    [Google Scholar]
  33. Lin G., Simmons G., Pohlmann S. 8 other authors 2003; Differential N-linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR. J Virol 77:1337–1346 [CrossRef]
    [Google Scholar]
  34. Locker J. K., Rose J. K., Horzinek M. C., Rottier P. J. 1992; Membrane assembly of the triple-spanning coronavirus M protein. Individual transmembrane domains show preferred orientation. J Biol Chem 267:21911–21918
    [Google Scholar]
  35. Locker J. K., Klumperman J., Oorschot V., Horzinek M. C., Geuze H. J., Rottier P. J. 1994; The cytoplasmic tail of mouse hepatitis virus M protein is essential but not sufficient for its retention in the Golgi complex. J Biol Chem 269:28263–28269
    [Google Scholar]
  36. Locker J. K., Opstelten D. J., Ericsson M., Horzinek M. C., Rottier P. J. 1995; Oligomerization of a trans -Golgi/ trans -Golgi network retained protein occurs in the Golgi complex and may be part of its retention. J Biol Chem 270:8815–8821 [CrossRef]
    [Google Scholar]
  37. Lontok E., Corse E., Machamer C. E. 2004; Intracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site. J Virol 78:5913–5922 [CrossRef]
    [Google Scholar]
  38. Lozach P. Y., Lortat-Jacob H., de Lacroix de Lavalette A. 9 other authors 2003; DC-SIGN and L-SIGN are high affinity binding receptors for hepatitis C virus glycoprotein E2. J Biol Chem 278:20358–20366 [CrossRef]
    [Google Scholar]
  39. Lozach P. Y., Amara A., Bartosch B., Virelizier J. L., Arenzana-Seisdedos F., Cosset F. L., Altmeyer R. 2004; C-type lectins L-SIGN and DC-SIGN capture and transmit infectious hepatitis C virus pseudotype particles. J Biol Chem 279:32035–32045 [CrossRef]
    [Google Scholar]
  40. Luo Z., Matthews A. M., Weiss S. R. 1999; Amino acid substitutions within the leucine zipper domain of the murine coronavirus spike protein cause defects in oligomerization and the ability to induce cell-to-cell fusion. J Virol 73:8152–8159
    [Google Scholar]
  41. Maceyka M., Machamer C. E. 1997; Ceramide accumulation uncovers a cycling pathway for the cis -Golgi network marker, infectious bronchitis virus M protein. J Cell Biol 139:1411–1418 [CrossRef]
    [Google Scholar]
  42. Machamer C. E., Mentone S. A., Rose J. K., Farquhar M. G. 1990; The E1 glycoprotein of an avian coronavirus is targeted to the cis Golgi complex. Proc Natl Acad Sci U S A 87:6944–6948 [CrossRef]
    [Google Scholar]
  43. Machamer C. E., Grim M. G., Esquela A., Chung S. W., Rolls M., Ryan K., Swift A. M. 1993; Retention of a cis Golgi protein requires polar residues on one face of a predicted α -helix in the transmembrane domain. Mol Biol Cell 4:695–704 [CrossRef]
    [Google Scholar]
  44. Niemann H., Geyer R., Klenk H. D., Linder D., Stirm S., Wirth M. 1984; The carbohydrates of mouse hepatitis virus (MHV) A59: structures of the O-glycosidically linked oligosaccharides of glycoprotein E1. EMBO J 3:665–670
    [Google Scholar]
  45. Opstelten D. J., de Groote P., Horzinek M. C., Vennema H., Rottier P. J. 1993; Disulfide bonds in folding and transport of mouse hepatitis coronavirus glycoproteins. J Virol 67:7394–7401
    [Google Scholar]
  46. Opstelten D. J., Raamsman M. J., Wolfs K., Horzinek M. C., Rottier P. J. 1995; Envelope glycoprotein interactions in coronavirus assembly. J Cell Biol 131:339–349 [CrossRef]
    [Google Scholar]
  47. Peiris J. S., Lai S. T., Poon L. L. 14 other authors; 2003; Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:1319–1325 [CrossRef]
    [Google Scholar]
  48. Raamsman M. J., Locker J. K., de Hooge A., de Vries A. A., Griffiths G., Vennema H., Rottier P. J. 2000; Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E. J Virol 74:2333–2342 [CrossRef]
    [Google Scholar]
  49. Simmons G., Reeves J. D., Rennekamp A. J., Amberg S. M., Piefer A. J., Bates P. 2004; Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci U S A 101:4240–4245 [CrossRef]
    [Google Scholar]
  50. Staropoli I., Chanel C., Girard M., Altmeyer R. 2000; Processing, stability, and receptor binding properties of oligomeric envelope glycoprotein from a primary HIV-1 isolate. J Biol Chem 275:35137–35145 [CrossRef]
    [Google Scholar]
  51. Stern D. F., Sefton B. M. 1982; Coronavirus proteins: structure and function of the oligosaccharides of the avian infectious bronchitis virus glycoproteins. J Virol 44:804–812
    [Google Scholar]
  52. Sui J., Li W., Murakami A. 11 other authors 2004; Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci U S A 101:2536–2541 [CrossRef]
    [Google Scholar]
  53. Swift A. M., Machamer C. E. 1991; A Golgi retention signal in a membrane-spanning domain of coronavirus E1 protein. J Cell Biol 115:19–30 [CrossRef]
    [Google Scholar]
  54. Taguchi F. 1993; Fusion formation by the uncleaved spike protein of murine coronavirus JHMV variant cl-2. J Virol 67:1195–1202
    [Google Scholar]
  55. Taguchi F., Ikeda T., Saeki K., Kubo H., Kikuchi T. 1993; Fusogenic properties of uncleaved spike protein of murine coronavirus JHMV. Adv Exp Med Biol 342:171–175
    [Google Scholar]
  56. Tripet B., Howard M. W., Jobling M., Holmes R. K., Holmes K. V., Hodges R. S. 2004; Structural characterization of the SARS-coronavirus spike S fusion protein core. J Biol Chem 279:20836–20849 [CrossRef]
    [Google Scholar]
  57. Tsang K. W., Ho P. L., Ooi G. C. 13 other authors 2003; A cluster of cases of severe acute respiratory syndrome in Hong Kong. N Engl J Med 348:1977–1985 [CrossRef]
    [Google Scholar]
  58. Vennema H., Godeke G. J., Rossen J. W., Voorhout W. F., Horzinek M. C., Opstelten D. J., Rottier P. J. 1996; Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J 15:2020–2028
    [Google Scholar]
  59. Wang P., Chen J., Zheng A. 15 other authors 2004; Expression cloning of functional receptor used by SARS coronavirus. Biochem Biophys Res Commun 315:439–444 [CrossRef]
    [Google Scholar]
  60. Wei X., Decker J. M., Wang S. 12 other authors 2003; Antibody neutralization and escape by HIV-1. Nature 422:307–312 [CrossRef]
    [Google Scholar]
  61. Williams R. K., Jiang G. S., Holmes K. V. 1991; Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc Natl Acad Sci U S A 88:5533–5536 [CrossRef]
    [Google Scholar]
  62. Wong S. K., Li W., Moore M. J., Choe H., Farzan M. 2004; A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem 279:3197–3201
    [Google Scholar]
  63. Woo P. C., Lau S. K., Tsoi H. W. 11 other authors 2004; Relative rates of non-pneumonic SARS coronavirus infection and SARS coronavirus pneumonia. Lancet 363:841–845 [CrossRef]
    [Google Scholar]
  64. Xiao X., Chakraborti S., Dimitrov A. S., Gramatikoff K., Dimitrov D. S. 2003; The SARS-CoV S glycoprotein: expression and functional characterization. Biochem Biophys Res Commun 312:1159–1164 [CrossRef]
    [Google Scholar]
  65. Xiao X., Feng Y., Chakraborti S., Dimitrov D. S. 2004; Oligomerization of the SARS-CoV S glycoprotein: dimerization of the N-terminus and trimerization of the ectodomain. Biochem Biophys Res Commun 322:93–99 [CrossRef]
    [Google Scholar]
  66. Yang T. T., Cheng L., Kain S. R. 1996; Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic Acids Res 24:4592–4593 [CrossRef]
    [Google Scholar]
  67. Yang Z. Y., Kong W. P., Huang Y., Roberts A., Murphy B. R., Subbarao K., Nabel G. J. 2004a; A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428:561–564 [CrossRef]
    [Google Scholar]
  68. Yang Z. Y., Huang Y., Ganesh L., Leung K., Kong W. P., Schwartz O., Subbarao K., Nabel G. J. 2004b; pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J Virol 78:5642–5650 [CrossRef]
    [Google Scholar]
  69. Yeager C. L., Ashmun R. A., Williams R. K., Cardellichio C. B., Shapiro L. H., Look A. T., Holmes K. V. 1992; Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357:420–422 [CrossRef]
    [Google Scholar]
  70. Ying W., Hao Y., Zhang Y. 33 other authors 2004; Proteomic analysis on structural proteins of severe acute respiratory syndrome coronavirus. Proteomics 4:492–504 [CrossRef]
    [Google Scholar]
  71. Yu X., Bi W., Weiss S. R., Leibowitz J. L. 1994; Mouse hepatitis virus gene 5b protein is a new virion envelope protein. Virology 202:1018–1023 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80671-0
Loading
/content/journal/jgv/10.1099/vir.0.80671-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error