1887

Abstract

Two New York (NY) strains of the West Nile (WN) virus were plaque-purified and four variants that had different amino acid sequences at the -linked glycosylation site in the envelope (E) protein sequence were isolated. The E protein was glycosylated in only two of these strain variants. To determine the relationship between E protein glycosylation and pathogenicity of the WN virus, 6-week-old mice were infected subcutaneously with these variants. Mice infected with viruses that carried the glycosylated E protein developed lethal infection, whereas mice infected with viruses that carried the non-glycosylated E protein showed low mortality. In contrast, intracerebral infection of mice with viruses carrying either the glycosylated or non-glycosylated forms of the E protein resulted in lethal infection. These results suggested that E protein glycosylation is a molecular determinant of neuroinvasiveness in the NY strains of WN virus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80247-0
2004-12-01
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/12/vir853637.html?itemId=/content/journal/jgv/10.1099/vir.0.80247-0&mimeType=html&fmt=ahah

References

  1. Anderson, J. F., Vossbrinck, C. R., Andreadis, T. G., Iton, A., Beckwith, W. H., III & Mayo, D. R. ( 2001; ). A phylogenetic approach to following West Nile virus in Connecticut. Proc Natl Acad Sci U S A 98, 12885–12889.[CrossRef]
    [Google Scholar]
  2. Beasley, D. W. C., Li, L., Suderman, M. T. & Barrett, A. D. T. ( 2002; ). Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology 296, 17–23.[CrossRef]
    [Google Scholar]
  3. Chambers, T. J., Hahn, C. S., Galler, R. & Rice, C. M. ( 1990; ). Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44, 649–688.[CrossRef]
    [Google Scholar]
  4. Chambers, T. J., Halevy, M., Nestorowicz, A., Rice, C. M. & Lustig, S. ( 1998; ). West Nile virus envelope proteins: nucleotide sequence analysis of strains differing in mouse neuroinvasiveness. J Gen Virol 79, 2375–2380.
    [Google Scholar]
  5. Diamond, M. S., Shrestha, B., Marri, A., Mahan, D. & Engle, M. ( 2003; ). B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J Virol 77, 2578–2586.[CrossRef]
    [Google Scholar]
  6. Falgout, B., Pethel, M., Zhang, Y.-M. & Lai, C.-J. ( 1991; ). Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J Virol 65, 2467–2475.
    [Google Scholar]
  7. Garmendia, A. E., Van Kruiningen, H. J. & French, R. A. ( 2001; ). The West Nile virus: its recent emergence in North America. Microbes Infect 3, 223–229.[CrossRef]
    [Google Scholar]
  8. Halevy, M., Akov, Y., Ben-Nathan, D., Kobiler, D., Lachmi, B. & Lustig, S. ( 1994; ). Loss of active neuroinvasiveness in attenuated strains of West Nile virus: pathogenicity in immunocompetent and SCID mice. Arch Virol 137, 355–370.[CrossRef]
    [Google Scholar]
  9. Hamman, M. H., Delphine, H. C. & Winston, H. P. ( 1965; ). Antigenic variation of West Nile virus in relation to geography. Am J Epidemiol 82, 40–55.
    [Google Scholar]
  10. Hubálek, Z. & Halouzka, J. ( 1999; ). West Nile fever – a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis 5, 643–650.[CrossRef]
    [Google Scholar]
  11. Johnston, L. J., Halliday, G. M. & King, N. J. C. ( 2000; ). Langerhans cells migrate to local lymph nodes following cutaneous infection with an arbovirus. J Invest Dermatol 114, 560–568.[CrossRef]
    [Google Scholar]
  12. Kolykhalov, A. A., Feinstone, S. M. & Rice, C. M. ( 1996; ). Identification of a highly conserved sequence element at the 3′ terminus of hepatitis C virus genome RNA. J Virol 70, 3363–3371.
    [Google Scholar]
  13. Lad, V. J., Shende, V. R., Gupta, A. K., Koshy, A. A. & Roy, A. ( 2000; ). Effect of tunicamycin on expression of epitopes on Japanese encephalitis virus glycoprotein E in porcine kidney cells. Acta Virol 44, 359–364.
    [Google Scholar]
  14. Li, H., Clum, S., You, S., Ebner, K. E. & Padmanabhan, R. ( 1999; ). The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids. J Virol 73, 3108–3116.
    [Google Scholar]
  15. Licon Luna, R. M., Lee, E., Müllbacher, A., Blanden, R. V., Langman, R. & Lobigs, M. ( 2002; ). Lack of both Fas ligand and perforin protects from flavivirus-mediated encephalitis in mice. J Virol 76, 3202–3211.[CrossRef]
    [Google Scholar]
  16. Lo, M. K., Tilgner, M., Bernard, K. A. & Shi, P.-Y. ( 2003; ). Functional analysis of mosquito-borne flavivirus conserved sequence elements within 3′ untranslated region of West Nile virus by use of a reporting replicon that differentiates between viral translation and RNA replication. J Virol 77, 10004–10014.[CrossRef]
    [Google Scholar]
  17. Matusan, A. E., Pryor, M. J., Davidson, A. D. & Wright, P. J. ( 2001; ). Mutagenesis of the Dengue virus type 2 NS3 protein within and outside helicase motifs: effects on enzyme activity and virus replication. J Virol 75, 9633–9643.[CrossRef]
    [Google Scholar]
  18. Scherret, J. H., Mackenzie, J. S., Khromykh, A. A. & Hall, R. A. ( 2001; ). Biological significance of glycosylation of the envelope protein of Kunjin virus. Ann N Y Acad Sci 951, 361–363.
    [Google Scholar]
  19. Seligman, S. J. & Bucher, D. J. ( 2003; ). The importance of being outer: consequences of the distinction between the outer and inner surfaces of flavivirus glycoprotein E. Trends Microbiol 11, 108–110.[CrossRef]
    [Google Scholar]
  20. Shi, P.-Y., Brinton, M. A., Veal, J. M., Zhong, Y. Y. & Wilson, W. D. ( 1996; ). Evidence for the existence of a pseudoknot structure at the 3′ terminus of the flavivirus genomic RNA. Biochemistry 35, 4222–4230.[CrossRef]
    [Google Scholar]
  21. Shirato, K., Mizutani, T., Kariwa, H. & Takashima, I. ( 2003; ). Discrimination of West Nile virus and Japanese encephalitis virus strains using RT-PCR RFLP analysis. Microbiol Immunol 47, 439–445.[CrossRef]
    [Google Scholar]
  22. Tilgner, M. & Shi, P.-Y. ( 2004; ). Structure and function of the 3′ terminal six nucleotides of the West Nile virus genome in viral replication. J Virol 78, 8159–8171.[CrossRef]
    [Google Scholar]
  23. Timofeev, A. V., Butenko, V. M. & Stephenson, J. R. ( 2004; ). Genetic vaccination of mice with plasmids encoding the NS1 non-structural protein from tick-borne encephalitis virus and dengue 2 virus. Virus Genes 28, 85–97.[CrossRef]
    [Google Scholar]
  24. Wang, T., Anderson, J. F., Magnarelli, L. A., Bushmich, S., Wong, S., Koski, R. A. & Fikrig, E. ( 2001a; ). West Nile virus envelope protein: role in diagnosis and immunity. Ann N Y Acad Sci 951, 325–327.
    [Google Scholar]
  25. Wang, T., Anderson, J. F., Magnarelli, L. A., Wong, S. J., Koski, R. A. & Fikrig, E. ( 2001b; ). Immunization of mice against West Nile virus with recombinant envelope protein. J Immunol 167, 5273–5277.[CrossRef]
    [Google Scholar]
  26. Wang, T., Scully, E., Yin, Z. & 7 other authors ( 2003a; ). IFN-γ-producing γδ T cells help control murine West Nile virus infection. J Immunol 171, 2524–2531.[CrossRef]
    [Google Scholar]
  27. Wang, Y., Lobigs, M., Lee, E. & Müllbacher, A. ( 2003b; ). CD8+ T cells mediate recovery and immunopathology in West Nile virus encephalitis. J Virol 77, 13323–13334.[CrossRef]
    [Google Scholar]
  28. Wu, S.-J. L., Grouard-Vogel, G., Sun, W. & 14 other authors ( 2000; ). Human skin Langerhans cells are targets of dengue virus infection. Nat Med 6, 816–820.[CrossRef]
    [Google Scholar]
  29. Xu, G., Xu, X., Li, Z., He, Q., Wu, B., Sun, S. & Chen, H. ( 2004; ). Construction of recombinant pseudorabies virus expressing NS1 protein of Japanese encephalitis (SA14-14-2) virus and its safety and immunogenicity. Vaccine 22, 1846–1853.[CrossRef]
    [Google Scholar]
  30. Yun, S.-I., Kim, S.-Y., Rice, C. M. & Lee, Y.-M. ( 2003; ). Development and application of a reverse genetics system for Japanese encephalitis virus. J Virol 77, 6450–6465.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80247-0
Loading
/content/journal/jgv/10.1099/vir.0.80247-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error