1887

Abstract

Human respiratory syncytial virus (RSV) is a major cause of respiratory infection in children and in the elderly. The RSV fusion (F) glycoprotein has long been recognized as a vaccine candidate as it elicits cytotoxic T-lymphocyte (CTL) and antibody responses. Two murine H-2K-restricted CTL epitopes (F85–93 and F92–106) are known in the F protein of the A2 strain of RSV. F-specific CTL lines using BCH4 fibroblasts that are persistently infected with the Long strain of human RSV as stimulators were generated, and it was found that in this strain only the F85–93 epitope is conserved. Motif based epitope prediction programs and an F2 chain deleted F protein encoded in a recombinant vaccinia virus enabled identification of a new epitope in the Long strain, F249–258, which is presented by K as a 9-mer (TYMLTNSEL) or a 10-mer (TYMLTNSELL) peptide. The results suggest that the 10-mer might be a naturally processed endogenous K ligand. The CD8 T-lymphocyte responses to epitopes F85–93 and F249–258 present in the F protein of RSV Long were found to be strongly skewed to F85–93 in multispecific CTL lines and during a secondary response to a recombinant vaccinia virus that expresses the entire F protein. However, no hierarchy in CD8 T-lymphocyte responses to F85–93 and F249–258 epitopes was observed during a primary response.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80219-0
2004-11-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/11/vir853229.html?itemId=/content/journal/jgv/10.1099/vir.0.80219-0&mimeType=html&fmt=ahah

References

  1. Belz, G. T., Xie, W., Altman, J. D. & Doherty, P. C. ( 2000; ). A previously unrecognized H-2Db-restricted peptide prominent in the primary influenza A virus-specific CD8+ T-cell response is much less apparent following secondary challenge. J Virol 74, 3486–3493.[CrossRef]
    [Google Scholar]
  2. Bembridge, G. P., López, J. A., Cook, R., Melero, J. A. & Taylor, G. ( 1998; ). Recombinant vaccinia virus coexpressing the F protein of respiratory syncytial virus (RSV) and interleukin-4 (IL-4) does not inhibit the development of RSV-specific memory cytotoxic T lymphocytes, whereas priming is diminished in the presence of high levels of IL-2 or gamma interferon. J Virol 72, 4080–4087.
    [Google Scholar]
  3. Bembridge, G. P., Rodríguez, N., García-Beato, R., Nicolson, C., Melero, J. A. & Taylor, G. ( 2000; ). DNA encoding the attachment (G) or fusion (F) protein of respiratory syncytial virus induces protection in the absence of pulmonary inflammation. J Gen Virol 81, 2519–2523.
    [Google Scholar]
  4. Blasco, R. & Moss, B. ( 1995; ). Selection of recombinant vaccinia viruses on the basis of plaque formation. Gene 158, 157–162.[CrossRef]
    [Google Scholar]
  5. Cannon, M. J., Openshaw, P. J. & Askonas, B. A. ( 1988; ). Cytotoxic T cells clear virus but augment lung pathology in mice infected with respiratory syncytial virus. J Exp Med 168, 1163–1168.[CrossRef]
    [Google Scholar]
  6. Carbone, F. R. & Bevan, M. J. ( 1990; ). Class I-restricted processing and presentation of exogenous cell-associated antigen in vivo. J Exp Med 171, 377–387.[CrossRef]
    [Google Scholar]
  7. Chang, J. & Braciale, T. J. ( 2002; ). Respiratory syncytial virus infection suppresses lung CD8+ T-cell effector activity and peripheral CD8+ T-cell memory in the respiratory tract. Nat Med 8, 54–60.[CrossRef]
    [Google Scholar]
  8. Chang, J., Srikiatkhachorn, A. & Braciale, T. J. ( 2001; ). Visualization and characterization of respiratory syncytial virus F-specific CD8+ T cells during experimental virus infection. J Immunol 167, 4254–4260.[CrossRef]
    [Google Scholar]
  9. Chen, W., Antón, L. C., Bennink, J. R. & Yewdell, J. W. ( 2000; ). Dissecting the multifactorial causes of immunodominance in class I-restricted T cell responses to viruses. Immunity 12, 83–93.[CrossRef]
    [Google Scholar]
  10. Collins, P. L., Chanock, R. M. & Murphy, B. R. ( 2001; ). Respiratory syncytial virus. In Fields Virology, 4th edn, pp. 1443–1485. Edited by D. M. Knipe & P. M. Howley. Philadelphia: Lippincott Williams & Wilkins.
  11. Cristina, J., López, J. A., Albo, C., García-Barreno, B., García, J., Melero, J. A. & Portela, A. ( 1990; ). Analysis of genetic variability in human respiratory syncytial virus by the RNase A mismatch cleavage method: subtype divergence and heterogeneity. Virology 174, 126–134.[CrossRef]
    [Google Scholar]
  12. Crowe, S. R., Turner, S. J., Miller, S. C., Roberts, A. D., Rappolo, R. A., Doherty, P. C., Ely, K. H. & Woodland, D. L. ( 2003; ). Differential antigen presentation regulates the changing patterns of CD8+ T cell immunodominance in primary and secondary influenza virus infections. J Exp Med 198, 399–410.[CrossRef]
    [Google Scholar]
  13. Del Val, M., Volkmer, H., Rothbard, J. B., Jonjić, S., Messerle, M., Schickedanz, J., Reddehase, M. J. & Koszinowski, U. H. ( 1988; ). Molecular basis for cytolytic T-lymphocyte recognition of the murine cytomegalovirus immediate-early protein pp89. J Virol 62, 3965–3972.
    [Google Scholar]
  14. Del Val, M., Schlicht, H. J., Ruppert, T., Reddehase, M. J. & Koszinowski, U. H. ( 1991; ). Efficient processing of an antigenic sequence for presentation by MHC class I molecules depends on its neighboring residues in the protein. Cell 66, 1145–1153.[CrossRef]
    [Google Scholar]
  15. Eisenlohr, L. C., Yewdell, J. W. & Bennink, J. R. ( 1992; ). Flanking sequences influence the presentation of an endogenously synthesized peptide to cytotoxic T lymphocytes. J Exp Med 175, 481–487.[CrossRef]
    [Google Scholar]
  16. Fernie, B. F., Ford, E. C. & Gerin, J. L. ( 1981; ). The development of Balb/c cells persistently infected with respiratory syncytial virus: presence of ribonucleoprotein on the cell surface. Proc Soc Exp Biol Med 167, 83–86.[CrossRef]
    [Google Scholar]
  17. Gaddum, R. M., Cook, R. S., Wyld, S. G., López, J. A., Bustos, R., Melero, J. A. & Taylor, G. ( 1996; ). Mutant forms of the F protein of human respiratory syncytial (RS) virus induce a cytotoxic T lymphocyte response but not a neutralizing antibody response and only transient resistance to RS virus infection. J Gen Virol 77, 1239–1248.[CrossRef]
    [Google Scholar]
  18. García-Barreno, B., Jorcano, J. L., Aukenbauer, T., López-Galíndez, C. & Melero, J. A. ( 1988; ). Participation of cytoskeletal intermediate filaments in the infectious cycle of human respiratory syncytial virus (RSV). Virus Res 9, 307–321.[CrossRef]
    [Google Scholar]
  19. García-Barreno, B., Palomo, C., Peñas, C., Delgado, T., Pérez-Breña, P. & Melero, J. A. ( 1989; ). Marked differences in the antigenic structure of human respiratory syncytial virus F and G glycoproteins. J Virol 63, 925–932.
    [Google Scholar]
  20. González-Reyes, L., Ruiz-Argüello, M. B., García-Barreno, B., Calder, L., López, J. A., Albar, J. P., Skehel, J. J., Wiley, D. C. & Melero, J. A. ( 2001; ). Cleavage of the human respiratory syncytial virus fusion protein at two distinct sites is required for activation of membrane fusion. Proc Natl Acad Sci U S A 98, 9859–9864.[CrossRef]
    [Google Scholar]
  21. Graham, B. S., Bunton, L. A., Wright, P. F. & Karzon, D. T. ( 1991; ). Role of T lymphocyte subsets in the pathogenesis of primary infection and rechallenge with respiratory syncytial virus in mice. J Clin Invest 88, 1026–1033.[CrossRef]
    [Google Scholar]
  22. Jiang, S., Borthwick, N. J., Morrison, P., Gao, G. F. & Steward, M. W. ( 2002; ). Virus-specific CTL responses induced by an H-2Kd-restricted, motif-negative 15-mer peptide from the fusion protein of respiratory syncytial virus. J Gen Virol 83, 429–438.
    [Google Scholar]
  23. Keşmir, C., Nussbaum, A. K., Schild, H., Detours, V. & Brunak, S. ( 2002; ). Prediction of proteasome cleavage motifs by neural networks. Protein Eng 15, 287–296.[CrossRef]
    [Google Scholar]
  24. Kulkarni, A. B., Collins, P. L., Bacik, I., Yewdell, J. W., Bennink, J. R., Crowe, J. E., Jr & Murphy, B. R. ( 1995; ). Cytotoxic T cells specific for a single peptide on the M2 protein of respiratory syncytial virus are the sole mediators of resistance induced by immunization with M2 encoded by a recombinant vaccinia virus. J Virol 69, 1261–1264.
    [Google Scholar]
  25. Li, X., Sambhara, S., Li, C. X. & 7 other authors ( 1998; ). Protection against respiratory syncytial virus infection by DNA immunization. J Exp Med 188, 681–688.[CrossRef]
    [Google Scholar]
  26. López, J. A., Villanueva, N., Melero, J. A. & Portela, A. ( 1988; ). Nucleotide sequence of the fusion and phosphoprotein genes of human respiratory syncytial (RS) virus Long strain: evidence of subtype genetic heterogeneity. Virus Res 10, 249–261.[CrossRef]
    [Google Scholar]
  27. López, J. A., Bustos, R., Örvell, C., Berois, M., Arbiza, J., García-Barreno, B. & Melero, J. A. ( 1998; ). Antigenic structure of human respiratory syncytial virus fusion glycoprotein. J Virol 72, 6922–6928.
    [Google Scholar]
  28. Martínez, I., Bustos, J. & Melero, J. A. ( 2001; ). Reduced expression of surface glycoproteins in mouse fibroblasts persistently infected with human respiratory syncytial virus (HRSV). Arch Virol 146, 669–683.[CrossRef]
    [Google Scholar]
  29. Nussbaum, A. K., Kuttler, C., Tenzer, S. & Schild, H. ( 2003; ). Using the World Wide Web for predicting CTL epitopes. Curr Opin Immunol 15, 69–74.[CrossRef]
    [Google Scholar]
  30. Olmsted, R. A., Elango, N., Prince, G. A., Murphy, B. R., Johnson, P. R., Moss, B., Chanock, R. M. & Collins, P. L. ( 1986; ). Expression of the F glycoprotein of respiratory syncytial virus by a recombinant vaccinia virus: comparison of the individual contributions of the F and G glycoproteins to host immunity. Proc Natl Acad Sci U S A 83, 7462–7466.[CrossRef]
    [Google Scholar]
  31. Parker, K. C., Bednarek, M. A. & Coligan, J. E. ( 1994; ). Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152, 163–175.
    [Google Scholar]
  32. Pemberton, R. M., Cannon, M. J., Openshaw, P. J., Ball, L. A., Wertz, G. W. & Askonas, B. A. ( 1987; ). Cytotoxic T cell specificity for respiratory syncytial virus proteins: fusion protein is an important target antigen. J Gen Virol 68, 2177–2182.[CrossRef]
    [Google Scholar]
  33. Rammensee, H. G., Bachmann, J., Emmerich, N. P., Bachor, O. A. & Stevanovic, S. ( 1999; ). syfpeithi: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219.[CrossRef]
    [Google Scholar]
  34. Restifo, N. P., Bačík, I., Irvine, K. R., Yewdell, J. W., McCabe, B. J., Anderson, R. W., Eisenlohr, L. C., Rosenberg, S. A. & Bennink, J. R. ( 1995; ). Antigen processing in vivo and the elicitation of primary CTL responses. J Immunol 154, 4414–4422.
    [Google Scholar]
  35. Schlender, J., Zimmer, G., Herrler, G. & Conzelmann, K. K. ( 2003; ). Respiratory syncytial virus (RSV) fusion protein subunit F2, not attachment protein G, determines the specificity of RSV infection. J Virol 77, 4609–4616.[CrossRef]
    [Google Scholar]
  36. Simoes, E. A. ( 1999; ). Respiratory syncytial virus infection. Lancet 354, 847–852.[CrossRef]
    [Google Scholar]
  37. Srikiatkhachorn, A. & Braciale, T. J. ( 1997; ). Virus-specific CD8+ T lymphocytes downregulate T helper cell type 2 cytokine secretion and pulmonary eosinophilia during experimental murine respiratory syncytial virus infection. J Exp Med 186, 421–432.[CrossRef]
    [Google Scholar]
  38. Stott, E. J., Taylor, G., Ball, L. A., Anderson, K., Young, K. K., King, A. M. & Wertz, G. W. ( 1987; ). Immune and histopathological responses in animals vaccinated with recombinant vaccinia viruses that express individual genes of human respiratory syncytial virus. J Virol 61, 3855–3861.
    [Google Scholar]
  39. Taylor, G., Stott, E. J., Bew, M., Fernie, B. F., Cote, P. J., Collins, A. P., Hughes, M. & Jebbett, J. ( 1984; ). Monoclonal antibodies protect against respiratory syncytial virus infection in mice. Immunology 52, 137–142.
    [Google Scholar]
  40. The IMpact-RSV Study Group ( 1998; ). Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. Pediatrics 102, 531–537.[CrossRef]
    [Google Scholar]
  41. Yewdell, J. W. & Bennink, J. R. ( 1999; ). Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu Rev Immunol 17, 51–88.[CrossRef]
    [Google Scholar]
  42. Zhou, X., Momburg, F., Liu, T., Abdel Motal, U. M., Jondal, M., Hämmerling, G. J. & Ljunggren, H. G. ( 1994; ). Presentation of viral antigens restricted by H-2Kb, Db or Kd in proteasome subunit LMP2- and LMP7-deficient cells. Eur J Immunol 24, 1863–1868.[CrossRef]
    [Google Scholar]
  43. Zimmer, G., Budz, L. & Herrler, G. ( 2001; ). Proteolytic activation of respiratory syncytial virus fusion protein. Cleavage at two furin consensus sequences. J Biol Chem 276, 31642–31650.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80219-0
Loading
/content/journal/jgv/10.1099/vir.0.80219-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error