1887

Abstract

Interference of measles virus (MV) with dendritic-cell (DC) functions and deregulation of T-cell differentiation have been proposed to be central to the profound suppression of immune responses to secondary infections up to several weeks after the acute disease. To address the impact of MV infection on the ability of DCs to promote Th-cell differentiation, an system was used where uninfected, tumour necrosis factor alpha/interleukin (IL) 1-primed DCs were co-cultured with CD45RO T cells in the presence of conditioned media from MV-infected DCs primed under neutral or DC-polarizing conditions. It was found that supernatants of DCs infected with an MV vaccine strain strongly promoted Th1 differentation, whereas those obtained from wild-type MV-infected DCs generated a mixed Th1/Th0 response, irrespective of the conditions used for DC priming. Th-cell commitment in this system did not correlate with the production of IL12 p70, IL18 or IL23. Thus, a combination of these or other, as yet undefined, soluble factors is produced upon MV infection of DCs that strongly promotes Th1/Th0 differentiation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80125-0
2004-11-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/11/vir853239.html?itemId=/content/journal/jgv/10.1099/vir.0.80125-0&mimeType=html&fmt=ahah

References

  1. Arneborn, P. & Biberfeld, G. ( 1983; ). T-lymphocyte subpopulations in relation to immunosuppression in measles and varicella. Infect Immun 39, 29–37.
    [Google Scholar]
  2. Atabani, S. F., Byrnes, A. A., Jaye, A., Kidd, I. M., Magnusen, A. F., Whittle, H. & Karp, C. L. ( 2001; ). Natural measles causes prolonged suppression of interleukin-12 production. J Infect Dis 184, 1–9.[CrossRef]
    [Google Scholar]
  3. Bieback, K., Lien, E., Klagge, I. M. & 7 other authors ( 2002; ). Hemagglutinin protein of wild-type measles virus activates Toll-like receptor 2 signaling. J Virol 76, 8729–8736.[CrossRef]
    [Google Scholar]
  4. Borrow, P. & Oldstone, M. B. A. ( 1995; ). Measles virus-mononuclear cell interactions. Curr Top Microbiol Immunol 191, 85–100.
    [Google Scholar]
  5. de Jong, E. C., Vieira, P. L., Kalinski, P., Schuitemaker, J. H. N., Tanaka, Y., Wierenga, E. A., Yazdanbakhsh, M. & Kapsenberg, M. L. ( 2002; ). Microbial compounds selectively induce Th1 cell-promoting or Th2 cell-promoting dendritic cells in vitro with diverse Th cell polarizing signals. J Immunol 168, 1704–1709.[CrossRef]
    [Google Scholar]
  6. Dubois, B., Lamy, P. J., Chemin, K., Lachaux, A. & Kaiserlian, D. ( 2001; ). Measles virus exploits dendritic cells to suppress CD4+ T-cell proliferation via expression of surface viral glycoproteins independently of T-cell trans-infection. Cell Immunol 214, 173–183.[CrossRef]
    [Google Scholar]
  7. Erlenhöfer, C., Duprex, W. P., Rima, B. K., ter Meulen, V. & Schneider-Schaulies, J. ( 2002; ). Analysis of receptor (CD46, CD150) usage by measles virus. J Gen Virol 83, 1431–1436.
    [Google Scholar]
  8. Fugier-Vivier, I., Servet-Delprat, C., Rivailler, P., Rissoan, M.-C., Liu, Y.-J. & Rabourdin-Combe, C. ( 1997; ). Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. J Exp Med 186, 813–823.[CrossRef]
    [Google Scholar]
  9. Fujinami, R., Sun, X., Howell, J., Jenkin, J. C. & Burns, J. B. ( 1998; ). Modulation of immune system function by measles virus infection: role of soluble factor and direct infection. J Virol 72, 9421–9427.
    [Google Scholar]
  10. Gans, H. A., Maldonado, Y., Yasukawa, L. L., Beeler, J., Audet, S., Rinki, M. M., DeHovitz, R. & Arvin, A. M. ( 1999; ). IL-12, IFN-γ, and T cell proliferation to measles in immunized infants. J Immunol 162, 5569–5575.
    [Google Scholar]
  11. Griffin, D. E. ( 1995; ). Immune responses during measles virus infection. Curr Top Microbiol Immunol 191, 117–134.
    [Google Scholar]
  12. Griffin, D. E. & Ward, B. J. ( 1993; ). Differential CD4 T cell activation in measles. J Infect Dis 168, 275–281.[CrossRef]
    [Google Scholar]
  13. Griffin, D. E., Ward, B. J., Jauregui, E., Johnson, R. T. & Vaisberg, A. ( 1989; ). Immune activation in measles. N Engl J Med 320, 1667–1672.[CrossRef]
    [Google Scholar]
  14. Griffin, D. E., Ward, B. J., Jauregui, E., Johnson, R. T. & Vaisberg, A. ( 1990; ). Immune activation during measles: interferon-γ and neopterin in plasma and cerebrospinal fluid in complicated and uncomplicated disease. J Infect Dis 161, 449–453.[CrossRef]
    [Google Scholar]
  15. Grosjean, I., Caux, C., Bella, C., Berger, I., Wild, F., Banchereau, J. & Kaiserlian, D. ( 1997; ). Measles virus infects human dendritic cells and blocks their allostimulatory properties for CD4+ T cells. J Exp Med 186, 801–812.[CrossRef]
    [Google Scholar]
  16. John, B., Rajagopal, D., Pashine, A., Rath, S., George, A. & Bal, V. ( 2002; ). Role of IL-12-independent and IL-12-dependent pathways in regulating generation of the IFN-γ component of T cell responses to Salmonella typhimurium. J Immunol 169, 2545–2552.[CrossRef]
    [Google Scholar]
  17. Karp, C. L., Wysocka, M., Wahl, L. M., Ahearn, J. M., Cuomo, P. J., Sherry, B., Trinchieri, G. & Griffin, D. E. ( 1996; ). Mechanism of suppression of cell-mediated immunity by measles virus. Science 273, 228–231.[CrossRef]
    [Google Scholar]
  18. Klagge, I. M., ter Meulen, V. & Schneider-Schaulies, S. ( 2000; ). Measles virus-induced promotion of dendritic cell maturation by soluble mediators does not overcome the immunosuppressive activity of viral glycoproteins on the cell surface. Eur J Immunol 30, 2741–2750.[CrossRef]
    [Google Scholar]
  19. Lebre, M. C., Antons, J. C., Kalinski, P., Schuitemaker, J. H. N., van Capel, T. M. M., Kapsenberg, M. L. & de Jong, E. C. ( 2003; ). Double-stranded RNA-exposed human keratinocytes promote Th1 responses by inducing a type-1 polarized phenotype in dendritic cells: role of keratinocyte-derived tumor necrosis factor α, type I interferons, and interleukin-18. J Invest Dermatol 120, 990–997.[CrossRef]
    [Google Scholar]
  20. Leopardi, R., Ilonen, J., Mattila, L. & Salmi, A. A. ( 1993; ). Effect of measles virus infection on MHC class II expression and antigen presentation in human monocytes. Cell Immunol 147, 388–396.[CrossRef]
    [Google Scholar]
  21. Nagai, T., Devergne, O., Mueller, T. F., Perkins, D. L., van Seventer, J. M. & van Seventer, G. A. ( 2003; ). Timing of IFN-β exposure during human dendritic cell maturation and naive Th cell stimulation has contrasting effects on Th1 subset generation: a role for IFN-β-mediated regulation of IL-12 family cytokines and IL-18 in naive Th cell differentiation. J Immunol 171, 5233–5243.[CrossRef]
    [Google Scholar]
  22. Ohgimoto, S., Ohgimoto, K., Niewiesk, S. & 7 other authors ( 2001; ). The haemagglutinin protein is an important determinant of measles virus tropism for dendritic cells in vitro. J Gen Virol 82, 1835–1844.
    [Google Scholar]
  23. Oppmann, B., Lesley, R., Blom, B. & 22 other authors ( 2000; ). Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715–725.[CrossRef]
    [Google Scholar]
  24. O'Shea, J. J. & Visconti, R. ( 2000; ). Type 1 IFNs and regulation of TH1 responses: enigmas both resolved and emerge. Nat Immunol 1, 17–19.[CrossRef]
    [Google Scholar]
  25. Oxenius, A., Karrer, U., Zinkernagel, R. M. & Hengartner, H. ( 1999; ). IL-12 is not required for induction of type 1 cytokine responses in viral infections. J Immunol 162, 965–973.
    [Google Scholar]
  26. Robinson, D. S. & O'Garra, A. ( 2002; ). Further checkpoints in Th1 development. Immunity 16, 755–758.[CrossRef]
    [Google Scholar]
  27. Schijns, V. E. C. J., Haagmans, B. L., Wierda, C. M. H., Kruithof, B., Heijnen, I. A. F. M., Alber, G. & Horzinek, M. C. ( 1998; ). Mice lacking IL-12 develop polarized Th1 cells during viral infection. J Immunol 160, 3958–3964.
    [Google Scholar]
  28. Schlender, J., Schnorr, J. J., Spielhofer, P., Cathomen, T., Cattaneo, R., Billeter, M. A., ter Meulen, V. & Schneider-Schaulies, S. ( 1996; ). Interaction of measles virus glycoproteins with the surface of uninfected peripheral blood lymphocytes induces immunosuppression in vitro. Proc Natl Acad Sci U S A 93, 13194–13199.[CrossRef]
    [Google Scholar]
  29. Schneider-Schaulies, S., Kreth, H. W., Hofmann, G., Billeter, M. & ter Meulen, V. ( 1991; ). Expression of measles virus RNA in peripheral blood mononuclear cells of patients with measles, SSPE, and autoimmune diseases. Virology 182, 703–711.[CrossRef]
    [Google Scholar]
  30. Schneider-Schaulies, S., Niewiesk, S., Schneider-Schaulies, J. & ter Meulen, V. ( 2001; ). Measles virus induced immunosuppression: targets and effector mechanisms. Curr Mol Med 1, 163–181.[CrossRef]
    [Google Scholar]
  31. Schneider-Schaulies, S., Klagge, I. M. & ter Meulen, V. ( 2003; ). Dendritic cells and measles virus infection. Curr Top Microbiol Immunol 276, 77–101.
    [Google Scholar]
  32. Schnorr, J.-J., Xanthakos, S., Keikavoussi, P., Kämpgen, E., ter Meulen, V. & Schneider-Schaulies, S. ( 1997; ). Induction of maturation of human blood dendritic cell precursors by measles virus is associated with immunosuppression. Proc Natl Acad Sci U S A 94, 5326–5331.[CrossRef]
    [Google Scholar]
  33. Schnorr, J.-J., Cutts, F. T., Wheeler, J. G., Akramuzzaman, S. M., Alam, S. M., Azim, T., Schneider-Schaulies, S. & ter Meulen, V. ( 2001; ). Immune modulation after measles vaccination of 6–9 months old Bangladeshi infants. Vaccine 19, 1503–1510.[CrossRef]
    [Google Scholar]
  34. Servet-Delprat, C., Vidalain, P.-O., Azocar, O., Le Deist, F., Fischer, A. & Rabourdin-Combe, C. ( 2000a; ). Consequences of Fas-mediated human dendritic cell apoptosis induced by measles virus. J Virol 74, 4387–4393.[CrossRef]
    [Google Scholar]
  35. Servet-Delprat, C., Vidalain, P.-O., Bausinger, H., Manié, O., Le Deist, F., Azocar, O., Hanau, D., Fischer, A. & Rabourdin-Combe, C. ( 2000b; ). Measles virus induces abnormal differentiation of CD40 ligand-activated human dendritic cells. J Immunol 164, 1753–1760.[CrossRef]
    [Google Scholar]
  36. Steineur, M.-P., Grosjean, I., Bella, C. & Kaiserlian, D. ( 1998; ). Langerhans cells are susceptible to measles virus infection and actively suppress T cell proliferation. Eur J Dermatol 8, 413–420.
    [Google Scholar]
  37. Tatsuo, H., Ono, N., Tanaka, K. & Yanagi, Y. ( 2000; ). SLAM (CDw150) is a cellular receptor for measles virus. Nature 406, 893–897.[CrossRef]
    [Google Scholar]
  38. Vidalain, P.-O., Azocar, O., Lamouille, B., Astier, A., Rabourdin-Combe, C. & Servet-Delprat, C. ( 2000; ). Measles virus induces functional TRAIL production by human dendritic cells. J Virol 74, 556–559.[CrossRef]
    [Google Scholar]
  39. Vidalain, P.-O., Azocar, O., Yagita, H., Rabourdin-Combe, C. & Servet-Delprat, C. ( 2001; ). Cytotoxic activity of human dendritic cells is differentially regulated by double-stranded RNA and CD40 ligand. J Immunol 167, 3765–3772.[CrossRef]
    [Google Scholar]
  40. Ward, B. J. & Griffin, D. E. ( 1993; ). Changes in cytokine production after measles virus vaccination: predominant production of IL-4 suggests induction of a Th2 response. Clin Immunol Immunopathol 67, 171–177.[CrossRef]
    [Google Scholar]
  41. Weidmann, A., Fischer, C., Ohgimoto, S., Rüth, C., ter Meulen, V. & Schneider-Schaulies, S. ( 2000a; ). Measles virus-induced immunosuppression in vitro is independent of complex glycosylation of viral glycoproteins and of hemifusion. J Virol 74, 7548–7553.[CrossRef]
    [Google Scholar]
  42. Weidmann, A., Maisner, A., Garten, W., Seufert, M., ter Meulen, V. & Schneider-Schaulies, S. ( 2000b; ). Proteolytic cleavage of the fusion protein but not membrane fusion is required for measles virus-induced immunosuppression in vitro. J Virol 74, 1985–1993.[CrossRef]
    [Google Scholar]
  43. Wesa, A. & Galy, A. ( 2002; ). Increased production of pro-inflammatory cytokines and enhanced T cell responses after activation of human dendritic cells with IL-1 and CD40 ligand. BMC Immunol 3, 14–24.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80125-0
Loading
/content/journal/jgv/10.1099/vir.0.80125-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error