1887

Abstract

The rate of mutation during retrovirus replication is high. Mutations can occur during transcription of the viral genomic RNA from the integrated provirus or during reverse transcription from viral RNA to form viral DNA or during replication of the proviral DNA as the host cell is dividing. Therefore, three polymerases may all contribute to retroviral evolution: host RNA polymerase II, viral reverse transcriptases and host DNA polymerases, respectively. Since the rate of mutation for host DNA polymerase is very low, mutations are more likely to be caused by the host RNA polymerase II and/or the viral reverse transcriptase. A system was established to detect the frequency of frame-shift mutations caused by cellular RNA polymerase II, as well as the rate of retroviral mutation during a single cycle of replication . In this study, it was determined that RNA polymerase II contributes less than 3 % to frame-shift mutations that occur during retrovirus replication. Therefore, the majority of frame-shift mutations detected within the viral genome are the result of errors during reverse transcription.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80081-0
2004-08-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/8/vir852389.html?itemId=/content/journal/jgv/10.1099/vir.0.80081-0&mimeType=html&fmt=ahah

References

  1. Ba, Y., Tonoki, H., Tada, M., Nakata, D., Hamada, J. & Moriuchi, T. ( 2000; ). Transcriptional slippage of p53 gene enhanced by cellular damage in rat liver: monitoring the slippage by a yeast functional assay. Mutat Res 447, 209–220.[CrossRef]
    [Google Scholar]
  2. Blank, A., Gallant, J. A., Burgess, R. R. & Loeb, L. A. ( 1986; ). An RNA polymerase mutant with reduced accuracy of chain elongation. Biochemistry 25, 5920–5928.[CrossRef]
    [Google Scholar]
  3. Boyer, J. C., Bebenek, K. & Kunkel, T. A. ( 1992; ). Unequal human immunodeficiency virus type 1 reverse transcriptase error rates with RNA and DNA templates. Proc Natl Acad Sci U S A 89, 6919–6923.[CrossRef]
    [Google Scholar]
  4. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. ( 1994; ). Green fluorescent protein as a marker for gene expression. Science 263, 802–805.[CrossRef]
    [Google Scholar]
  5. de Mercoyrol, L., Corda, Y., Job, C. & Job, D. ( 1992; ). Accuracy of wheat-germ RNA polymerase II. General enzymatic properties and effect of template conformational transition from right-handed B-DNA to left-handed Z-DNA. Eur J Biochem 206, 49–58.[CrossRef]
    [Google Scholar]
  6. Erie, D. A., Hajiseyedjavadi, O., Young, M. C. & von Hippel, P. H. ( 1993; ). Multiple RNA polymerase conformations and GreA: control of the fidelity of transcription. Science 262, 867–873.[CrossRef]
    [Google Scholar]
  7. Gnatt, A. L., Cramer, P., Fu, J., Bushnell, D. A. & Kornberg, R. D. ( 2001; ). Structural basis of transcription: an RNA polymerase II elongation complex at 3·3 A resolution. Science 292, 1876–1882.[CrossRef]
    [Google Scholar]
  8. Kim, T., Mudry, R. A., Jr, Rexrode, C. A., II & Pathak, V. K. ( 1996; ). Retroviral mutation rates and A-to-G hypermutations during different stages of retroviral replication. J Virol 70, 7594–7602.
    [Google Scholar]
  9. Li, T. & Zhang, J. ( 2002; ). Intramolecular recombinations of Moloney murine leukemia virus occur during minus-strand DNA synthesis. J Virol 76, 9614–9623.[CrossRef]
    [Google Scholar]
  10. Libby, R. T. & Gallant, J. A. ( 1991; ). The role of RNA polymerase in transcriptional fidelity. Mol Microbiol 5, 999–1004.[CrossRef]
    [Google Scholar]
  11. Linton, M. F., Pierotti, V. & Young, S. G. ( 1992; ). Reading-frame restoration with an apolipoprotein B gene frameshift mutation. Proc Natl Acad Sci U S A 89, 11431–11435.[CrossRef]
    [Google Scholar]
  12. Mansky, L. M. ( 2000; ). In vivo analysis of human T-cell leukemia virus type 1 reverse transcription accuracy. J Virol 74, 9525–9531.[CrossRef]
    [Google Scholar]
  13. Mansky, L. M. & Temin, H. M. ( 1995; ). Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 69, 5087–5094.
    [Google Scholar]
  14. Miller, A. D., Garcia, J. V., von Suhr, N., Lynch, C. M., Wilson, C. & Eiden, M. V. ( 1991; ). Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J Virol 65, 2220–2224.
    [Google Scholar]
  15. O'Neil, P. K., Sun, G., Yu, H., Ron, Y., Dougherty, J. P. & Preston, B. D. ( 2002; ). Mutational analysis of HIV-1 long terminal repeats to explore the relative contribution of reverse transcriptase and RNA polymerase II to viral mutagenesis. J Biol Chem 277, 38053–38061.[CrossRef]
    [Google Scholar]
  16. Preston, B. D. & Dougherty, J. P. ( 1996; ). Mechanisms of retroviral mutation. Trends Microbiol 4, 16–21.[CrossRef]
    [Google Scholar]
  17. Preston, B. D., Poiesz, B. J. & Loeb, L. A. ( 1988; ). Fidelity of HIV-1 reverse transcriptase. Science 242, 1168–1171.[CrossRef]
    [Google Scholar]
  18. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  19. Sapp, C. M., Li, T. & Zhang, J. ( 1999; ). Systematic comparison of a color reporter gene and drug resistance genes for the determination of retroviral titers. J Biomed Sci 6, 342–348.[CrossRef]
    [Google Scholar]
  20. Thomas, M. J., Platas, A. A. & Hawley, D. K. ( 1998; ). Transcriptional fidelity and proofreading by RNA polymerase II. Cell 93, 627–637.[CrossRef]
    [Google Scholar]
  21. van Leeuwen, F. W., de Kleijn, D. P., van den Hurk, H. H. & 11 other authors ( 1998; ). Frameshift mutants of beta amyloid precursor protein and ubiquitin-B in Alzheimer's and Down patients. Science 279, 242–247.[CrossRef]
    [Google Scholar]
  22. Young, M., Inaba, H., Hoyer, L. W., Higuchi, M., Kazazian, H. H., Jr. & Antonarakis, S. E. ( 1997; ). Partial correction of a severe molecular defect in hemophilia A, because of errors during expression of the factor VIII gene. Am J Hum Genet 60, 565–573.
    [Google Scholar]
  23. Zhang, J. & Temin, H. M. ( 1993; ). Rate and mechanism of nonhomologous recombination during a single cycle of retroviral replication. Science 259, 234–238.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80081-0
Loading
/content/journal/jgv/10.1099/vir.0.80081-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error