1887

Abstract

The human immunodeficiency virus type 1 (HIV-1) Nef protein has been shown to accelerate viral growth kinetics in primary human T-lymphocytes and macrophages; however, the specific function(s) of Nef responsible for this phenotype in macrophages is unknown. To address this issue, mutants of a molecularly cloned macrophage-tropic isolate, HIV-1, were generated expressing single point mutations that abrogate the ability of Nef to interact with cellular kinases or mediate CD4 down-regulation. Infection of primary monocyte-derived macrophages (MDM) with these mutant viruses revealed that residues in the PXXP motif contribute to efficient replication. Interestingly, viruses expressing alleles of Nef defective in CD4 down-modulation activity retain wild-type levels of infectivity in single-round assays but exhibited delayed replication kinetics and grew to lower titres compared to the wild-type virus in MDM. These data suggest that efficient HIV-1 replication is dependent on the ability of Nef to interact with cellular kinases and remove CD4 from the surface of infected macrophages.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.79946-0
2004-06-01
2019-09-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/6/vir851463.html?itemId=/content/journal/jgv/10.1099/vir.0.79946-0&mimeType=html&fmt=ahah

References

  1. Aiken, C. & Trono, D. ( 1995; ). Nef stimulates human immunodeficiency virus type 1 proviral DNA synthesis. J Virol 69, 5048–5056.
    [Google Scholar]
  2. Alexander, L., Du, Z., Rosenzweig, M., Jung, J. U. & Desrosiers, R. C. ( 1997; ). A role for natural simian immunodeficiency virus and human immunodeficiency virus type 1 nef alleles in lymphocyte activation. J Virol 71, 6094–6099.
    [Google Scholar]
  3. Aquaro, S., Perno, C. F., Balestra, E. & 7 other authors ( 1997; ). Inhibition of replication of HIV in primary monocyte/macrophages by different antiviral drugs and comparative efficacy in lymphocytes. J Leukoc Biol 62, 138–143.
    [Google Scholar]
  4. Baur, A. S., Sass, G., Laffert, B., Willbold, D., Cheng, M. C. & Peterlin, B. M. ( 1997; ). The N-terminus of Nef from HIV-1/SIV associates with a protein complex containing Lck and a serine kinase. Immunity 6, 283–291.[CrossRef]
    [Google Scholar]
  5. Bell, I., Ashman, C., Maughan, J., Hooker, E., Cook, F. & Reinhart, T. A. ( 1998; ). Association of simian immunodeficiency virus Nef with the T-cell receptor (TCR) ζ chain leads to TCR down-modulation. J Gen Virol 79, 2717–2727.
    [Google Scholar]
  6. Brown, A., Wang, X., Sawai, E. & Cheng-Mayer, C. ( 1999; ). Activation of the PAK-related kinase by human immunodeficiency virus type 1 Nef in primary human peripheral blood lymphocytes and macrophages leads to phosphorylation of a PIX-p95 complex. J Virol 73, 9899–9907.
    [Google Scholar]
  7. Cheng-Mayer, C., Quiroga, M., Tung, J. W., Dina, D. & Levy, J. A. ( 1990; ). Viral determinants of human immunodeficiency virus type I T-cell and macrophage tropism, cytopathogenicity, and CD4 antigen modulation. J Virol 64, 4390–4398.
    [Google Scholar]
  8. Chowers, M. Y., Spina, C. A., Kwoh, T. J., Fitch, N. J. S., Richman, D. D. & Guateli, J. C. ( 1994; ). Optimal infectivity in vitro of human immunodeficiency virus type 1 requires an intact nef gene. J Virol 68, 2906–2914.
    [Google Scholar]
  9. Collette, Y., Dutartre, H., Benziane, A., Ramos-Morales, F., Benarous, R., Harris, M. & Olive, D. ( 1996; ). Physical and functional interaction of Nef with Lck. J Biol Chem 271, 6333–6341.[CrossRef]
    [Google Scholar]
  10. Cortes, M., Wong-Staal, F. & Lama, J. ( 2002; ). Cell surface CD4 interferes with the infectivity of HIV-1 particles released from T cells. J Biol Chem 277, 1770–1779.[CrossRef]
    [Google Scholar]
  11. Craig, H., Pandori, M., Riggs, N. L., Richman, D. D. & Guatelli, J. ( 1999; ). Analysis of the SH3-binding region of HIV-1 Nef: Partial functional defects introduced by mutations in the polyproline helix and the hydrophobic pocket. Virology 262, 55–63.[CrossRef]
    [Google Scholar]
  12. Deacon, N. J., Tsykin, A., Solomon, A. & 17 other authors ( 1995; ). Genomic structure of an attenuated quasi species from a blood transfusion donor and recipients. Science 270, 988–991.[CrossRef]
    [Google Scholar]
  13. Fackler, O. T., Luo, W., Geyer, M., Alberts, A. S. & Peterlin, B. M. ( 1999; ). Activation of Vav by Nef induces cytoskeletal rearrangements and downstream effector functions. Mol Cell 3, 729–739.[CrossRef]
    [Google Scholar]
  14. Freed, E. O. ( 2003; ). The HIV-TSG101 interface: recent advances in a budding field. Trends Microbiol 11, 56–59.[CrossRef]
    [Google Scholar]
  15. Garcia, J. V. & Miller, A. D. ( 1991; ). Serine phosphorylation-independent downregulation of cell-surface CD4 by nef. Nature 350, 508–511.[CrossRef]
    [Google Scholar]
  16. Gartner, S., Markovits, P., Markovits, D. M., Kaplan, M. H., Gallo, R. C. & Popovic, M. ( 1986; ). The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233, 215–219.[CrossRef]
    [Google Scholar]
  17. Gelderblom, H. R., Hausmann, E. H., Ozel, M., Pauli, G. & Koch, M. A. ( 1987; ). Fine structure of human immunodeficiency virus (HIV) and immunolocalization of structural proteins. Virology 156, 171–176.[CrossRef]
    [Google Scholar]
  18. Geleziunas, R., Xu, W., Tkeda, K., Ichijo, H. & Greene, W. C. ( 2001; ). HIV-1 Nef inhibits ASK1-dependent death signalling providing a potential mechanism for protecting the infected host cell. Nature 410, 834–838.[CrossRef]
    [Google Scholar]
  19. Glushakova, S., Munch, J., Carl, S., Greenough, T. C., Sullivan, J. L., Margolis, L. & Kirchhoff, F. ( 2001; ). CD4 down-modulation by human immunodeficiency virus type 1 Nef correlates with the efficiency of viral replication and with CD4+ T-cell depletion in human lymphoid tissue ex vivo. J Virol 75, 10113–10117.[CrossRef]
    [Google Scholar]
  20. Goldsmith, M. A., Warmerdam, M. T., Atchison, R. E., Miller, M. D. & Greene, W. C. ( 1995; ). Dissociation of the CD4 downregulation and viral infectivity enhancement functions of human immunodeficiency virus type 1 Nef. J Virol 69, 4112–4121.
    [Google Scholar]
  21. Greenway, A. L., Azad, A. & McPhee, D. A. ( 1995; ). Human immunodeficiency virus type 1 Nef protein inhibits activation pathways in peripheral blood mononuclear cells and T-cell lines. J Virol 69, 1842–1850.
    [Google Scholar]
  22. Grzesiek, S., Stahl, S. J., Wingfield, P. T. & Bax, A. ( 1996; ). The CD4 determinant for downregulation by HIV-1 Nef directly binds to Nef: mapping of the Nef binding surface by NMR. Biochemistry 35, 163–175.
    [Google Scholar]
  23. Guy, B., Kieny, M. P., Riviere, Y., Le Peuch, C., Dott, K., Girard, M., Montagnier, L. & Lecocq, J. P. ( 1987; ). HIV F/3′ orf encodes a phosphorylated GTP-binding protein resembling an oncogene product. Nature 330, 266–269.[CrossRef]
    [Google Scholar]
  24. Hanna, Z., Weng, X., Kay, D. G., Poudrier, J., Lowell, C. & Jolicoeur, P. ( 2001; ). The pathogenicity of human immunodeficiency virus (HIV) type 1 Nef in CD4C/HIV transgenic mice is abolished by mutation of its SH3-binding domain, and disease development is delayed in the absence of Hck. J Virol 75, 9378–9392.[CrossRef]
    [Google Scholar]
  25. Hirsch, V. M., Sharkey, M. E., Brown, C. R. & 8 other authors ( 1998; ). Vpx is required for dissemination and pathogenesis of SIV(SM) PBj: evidence of macrophage-dependent viral amplification. Nat Med 4, 1401–1408.[CrossRef]
    [Google Scholar]
  26. Ho, D. D., Rota, T. R. & Hirsch, M. S. ( 1986; ). Infection of monocyte/macrophages by human T lymphotrophic virus type III. J Clin Invest 77, 1712–1715.[CrossRef]
    [Google Scholar]
  27. Howe, A. Y., Jung, J. U. & Desrosiers, R. C. ( 1998; ). Zeta chain of the T-cell receptor interacts with Nef of simian immunodeficiency virus and human immunodeficiency virus type 2. J Virol 72, 9827–9834.
    [Google Scholar]
  28. Hua, J., Blair, W., Truant, R. & Cullen, B. R. ( 1997; ). Identification of regions in HIV-1 Nef required for efficient downregulation of cell surface CD4. Virology 231, 231–238.[CrossRef]
    [Google Scholar]
  29. Ignatius, R., Tenner-Racz, K., Messmer, D. & 9 other authors ( 2002; ). Increased macrophage infection upon subcutaneous inoculation of rhesus macaques with simian immunodeficiency virus-loaded dendritic cells or T cells but not with cell-free virus. J Virol 76, 9787–9797.[CrossRef]
    [Google Scholar]
  30. Kaul, M., Garden, G. A. & Lipton, S. A. ( 2001; ). Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410, 988–994.[CrossRef]
    [Google Scholar]
  31. Kawano, Y., Tanaka, Y., Misawa, N. & 10 other authors ( 1997; ). Mutational analysis of human immunodeficiency virus type 1 (HIV-1) accessory genes: requirement of a site in the nef gene for HIV-1 replication in activated CD4+ T cells in vitro and in vivo. J Virol 71, 8456–8466.
    [Google Scholar]
  32. Kestler, H. W. I., Ringler, D. J., Mori, K., Panicali, D. L., Sehgal, P. K., Daniel, M. D. & Desrosiers, R. C. ( 1991; ). Importance of the nef gene for maintenance of high virus loads and for the development of AIDS. Cell 65, 651–662.[CrossRef]
    [Google Scholar]
  33. Khan, I. H., Sawai, E. T., Antonio, E., Weber, C. J., Mandell, C. P., Montbriand, P. & Luciw, P. A. ( 1998; ). Role of the SH3-ligand domain of simian immunodeficiency virus Nef in interaction with Nef-associated kinase and simian AIDS in rhesus macaques. J Virol 72, 5820–5830.
    [Google Scholar]
  34. Kimpton, J. & Emerman, M. ( 1992; ). Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitve cell line on the basis of activation of an integrated beta-galactosidase gene. J Virol 66, 2232–2239.
    [Google Scholar]
  35. Kirchhoff, F., Geenough, T. C., Brettler, D. B., Sullivan, J. L. & Desrosiers, R. C. ( 1995; ). Absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N Engl J Med 332, 228–232.[CrossRef]
    [Google Scholar]
  36. Lama, J., Mangasarian, A. & Trono, D. ( 1999; ). Cell-surface expression of CD4 reduces HIV-1 infectivity by blocking Environ incorporation in a Nef- and Vpu-inhibitable manner. Curr Biol 9, 622–631.[CrossRef]
    [Google Scholar]
  37. Lang, S. M., Iafrate, A. J., Stahl-Henning, C. & 7 other authors ( 1997; ). Association of simian immunodeficiency virus Nef with cellular serine/threonine kinases is dispensable for the development of AIDS in rhesus macaques. Nat Med 3, 860–865.[CrossRef]
    [Google Scholar]
  38. Learmont, J. C., Geczy, A. F., Mills, J. & 9 other authors ( 1999; ). Immunologic and virologic status after 14 to 18 years of infection with an attenuated strain of HIV-1. N Engl J Med 340, 1715–1722.[CrossRef]
    [Google Scholar]
  39. Lee, C.-H., Leung, B., Lemmon, M. A., Zheng, J., Cowburn, D., Kuriyan, J. & Saksela, K. ( 1995; ). A single amino acid in the SH3 domain of Hck determines its high affinity and specificity in binding to HIV-1 Nef protein. EMBO J 14, 5006–5015.
    [Google Scholar]
  40. Lundquist, C. A., Tobiume, M., Zhou, J., Unutmaz, D. & Aiken, C. ( 2002; ). Nef-mediated downregulation of CD4 enhances human immunodeficiency virus type 1 replication in primary T lymphocytes. J Virol 76, 4625–4633.[CrossRef]
    [Google Scholar]
  41. Manninen, A., Hiipakkam, M., Vihinen, M., Lu, W., Mayer, B. J. & Saksela, K. ( 1998; ). SH3-domain binding function of HIV-1 Nef is required for association with PAK-related kinase. Virology 250, 273–282.[CrossRef]
    [Google Scholar]
  42. Marechal, V., Prevost, M.-C., Petit, C., Perret, E., Heard, J.-M. & Schwartz, O. ( 2001; ). Human immunodeficiency virus type 1 entry into macrophages mediated by macropinocytosis. J Virol 75, 11166–11177.[CrossRef]
    [Google Scholar]
  43. Marsh, M. & Thali, M. ( 2003; ). HIV's great escape. Nat Med 9, 1262–1263.[CrossRef]
    [Google Scholar]
  44. Meltzer, M. S., Nakamura, M., Hansen, B. D., Turpin, J. A., Kalter, D. C. & Gendelman, H. E. ( 1990; ). Macrophages as susceptible targets for HIV infection, persistent viral reservoirs in tissue, and key immunoregulatory cells that control levels of virus replication and extent of disease. AIDS Res Hum Retrovir 6, 967–971.
    [Google Scholar]
  45. Miller, M. D., Warmerdam, M. T., Page, K. A., Feinberg, M. B. & Greene, W. C. ( 1995; ). Expression of human immunodeficiency virus type I (HIV-1) nef gene during HIV-1 production increases progeny particle infectivity independently of gp120 or viral entry. J Virol 69, 579–584.
    [Google Scholar]
  46. Nguyen, D. G., Booth, A., Gould, S. J. & Hildreth, J. E. K. ( 2003; ). Evidence that HIV budding in primary macrophages occurs through the exosome release pathway. J Biol Chem 278, 52347–52354.[CrossRef]
    [Google Scholar]
  47. Nunn, M. F. & Marsh, J. W. ( 1996; ). Human immunodeficiency virus type 1 Nef associates with a member of the p21-activated kinase family. J Virol 70, 6157–6161.
    [Google Scholar]
  48. Orenstein, J. M., Meltzer, M. S., Phipps, T. & Gendelman, H. E. ( 1988; ). Cytoplasmic assembly and accumulation of human immunodeficiencyvirus types 1 and 2 in recombinant human colony-stimulating factor-1-treated human monocytes: an ultrastructural study. J Virol 62, 2578–2586.
    [Google Scholar]
  49. Orenstein, J. M., Fox, C. & Wahl, S. M. ( 1997; ). Macrophages as a source of HIV during opportunistic infections. Science 276, 1857–1861.[CrossRef]
    [Google Scholar]
  50. Papkalla, A., Munch, J., Otto, C. & Kirchhoff, F. ( 2002; ). Nef enhances human immunodeficiency virus type 1 infectivity and replication independently of viral coreceptor tropism. J Virol 76, 8455–8459.[CrossRef]
    [Google Scholar]
  51. Pelchen-Matthews, A., Kramer, B. & Marsh, M. ( 2003; ). Infectious HIV-1 assembles in late endosomes in primary macrophages. J Cell Biol 162, 443–455.[CrossRef]
    [Google Scholar]
  52. Piguet, V., Gu, F., Foti, M., Demaurex, N., Gruenberg, J., Carpentier, J.-L. & Trono, D. ( 1999; ). Nef-induced CD4 degradation: a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of β-COP in endosomes. Cell 97, 63–73.[CrossRef]
    [Google Scholar]
  53. Pornillos, O., Garrus, J. E. & Sundquist, W. I. ( 2002; ). Mechanisms of enveloped RNA virus budding. Trends Cell Biol 12, 569–579.[CrossRef]
    [Google Scholar]
  54. Raposo, G., Moore, M., Innes, D., Leijendekker, R., Leigh-Brown, A., Benaroch, P. & Geuze, H. ( 2002; ). Human macrophages accumulate HIV-1 particles in MHC II compartments. Traffic 3, 718–729.[CrossRef]
    [Google Scholar]
  55. Renkema, G. H. & Saksela, K. ( 2000; ). Interactions of HIV-1 NEF with cellular signal transducing proteins. Front Biosci 5, D268–283.[CrossRef]
    [Google Scholar]
  56. Ross, T., Oran, A. & Cullen, B. ( 1999; ). Inhibition of HIV-1 progeny virion release by cell-surface CD4 is relieved by expression of the viral Nef protein. Curr Biol 9, 613–621.[CrossRef]
    [Google Scholar]
  57. Saksela, K., Cheng, G. & Baltimore, D. ( 1995; ). Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. EMBO J 14, 484–491.
    [Google Scholar]
  58. Sawai, E. T., Baur, A., Struble, H., Peterlin, B. M., Levy, J. A. & Cheng-Mayer, C. ( 1994; ). Human immunodeficiency virus type 1 Nef associates with a cellular serine kinase in T lymphocytes. Proc Natl Acad Sci U S A 91, 1539–1543.[CrossRef]
    [Google Scholar]
  59. Sawai, E., Baur, A. S., Peterlin, B. M., Levy, J. A. & Cheng-Mayer, C. ( 1995; ). A conserved domain and membrane targeting of Nef from HIV and SIV are required for association with a cellular serine kinase activity. J Biol Chem 270, 15307–15314.[CrossRef]
    [Google Scholar]
  60. Schwartz, O., Marechal, V., Danos, O. & Heard, J.-M. ( 1995; ). Human immunodeficiency virus type 1 Nef increases the efficiency of reverse transcription in the infected cell. J Virol 69, 4053–4059.
    [Google Scholar]
  61. Schwartz, O., Marechal, V., Le Gall, S., Lemonnier, F. & Heard, J. M. ( 1996; ). Endocytosis of MHC-1 molecules is induced by HIV-1 Nef. Nature Med 2, 338–342.[CrossRef]
    [Google Scholar]
  62. Simmons, A., Aluvihare, V. & McMichael, A. ( 2001; ). Nef triggers a transcriptional program in T cells imitating single-signal T cell activation and inducing HIV virulence mediators. Immunity 14, 763–777.[CrossRef]
    [Google Scholar]
  63. Skowronski, J., Parks, D. & Mariani, R. ( 1993; ). Altered T cell activation and development in transgenic mice expressing the HIV-1 nef gene. EMBO J 12, 703–713.
    [Google Scholar]
  64. Smith, B. L., Krushelnycky, B. W., Mochly, R. D. & Berg, P. ( 1996; ). The HIV Nef protein associates with protein kinase C theta. J Biol Chem 271, 16753–16757.[CrossRef]
    [Google Scholar]
  65. Stoddart, C. A., Geleziunas, R., Ferrell, S. & 8 other authors ( 2003; ). Human immunodeficiency virus type 1 Nef-mediated downregulation of CD4 correlates with Nef enhancement of viral pathogenesis. J Virol 77, 2124–2133.[CrossRef]
    [Google Scholar]
  66. von Lindern, J. J., Rojo, D., Grovit-Ferbas, K. & 9 other authors ( 2003; ). Potential role for CD63 in CCR5-mediated human immunodeficiency virus type 1 infection of macrophages. J Virol 77, 3624–3633.[CrossRef]
    [Google Scholar]
  67. Wiskerchen, M. & Cheng-Mayer, C. ( 1996; ). HIV-1 Nef association with cellular serine kinase correlates with enhanced virion infectivity and efficient proviral DNA synthesis. Virology 224, 292–301.[CrossRef]
    [Google Scholar]
  68. Xu, X.-N., Laffert, B., Screaton, G. R., Kraft, M., Wolf, D., Kolanus, W., Mongkolsapay, J., McMichael, A. J. & Baur, A. S. ( 1999; ). Induction of fas ligand expression by HIV involves the interaction of Nef with the T cell receptor ζ chain. J Exp Med 189, 1489–1496.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.79946-0
Loading
/content/journal/jgv/10.1099/vir.0.79946-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error