1887

Abstract

The antibody responses elicited by immunization of humans with vaccinia virus (VACV) strains Lister, Dryvax and NYVAC have been determined and compared. Neutralizing antibodies against intracellular mature virus (IMV) and extracellular enveloped virus (EEV), and binding antibody titres (ELISA) against the EEV protein B5, the IMV proteins A27 and H3, and VACV-infected cell lysate were measured. Lister and Dryvax induced broadly similar antibody titres, consistent with the fact that these vaccines each protected against smallpox. In contrast, antibody titres induced by NYVAC were significantly lower than those induced by both Lister and Dryvax. Moreover, there were qualitative differences with NYVAC-immunized subjects failing to induce A27-specific antibodies. These observations suggest that although NYVAC is a safer VACV strain, it does not induce an optimal VACV-specific antibody response. However, NYVAC strains engineered to express antigens from other pathogens remain promising candidate vaccines for immunization against other diseases.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.2008/004440-0
2008-12-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/12/2992.html?itemId=/content/journal/jgv/10.1099/vir.0.2008/004440-0&mimeType=html&fmt=ahah

References

  1. Auckland, C., Cowlishaw, A., Morgan, D. & Miller, E. ( 2005; ). Reactions to small pox vaccine in naive and previously-vaccinated individuals. Vaccine 23, 4185–4187.[CrossRef]
    [Google Scholar]
  2. Bart, P. A., Goodall, R., Barber, T., Harari, A., Guimaraes-Walker, A., Khonkarly, M., Sheppard, N. C., Bangala, Y., Frachette, M. J. & other authors ( 2008; ). EV01: a phase I trial in healthy HIV negative volunteers to evaluate a clade C HIV vaccine, NYVAC-C undertaken by the EuroVacc Consortium. Vaccine 26, 3153–3161.[CrossRef]
    [Google Scholar]
  3. Bell, E., Shamim, M., Whitbeck, J. C., Sfyroera, G., Lambris, J. D. & Isaacs, S. N. ( 2004; ). Antibodies against the extracellular enveloped virus B5R protein are mainly responsible for the EEV neutralizing capacity of vaccinia immune globulin. Virology 325, 425–431.[CrossRef]
    [Google Scholar]
  4. Belyakov, I. M., Earl, P., Dzutsev, A., Kuznetsov, V. A., Lemon, M., Wyatt, L. S., Snyder, J. T., Ahlers, J. D., Franchini, G. & other authors ( 2003; ). Shared modes of protection against poxvirus infection by attenuated and conventional smallpox vaccine viruses. Proc Natl Acad Sci U S A 100, 9458–9463.[CrossRef]
    [Google Scholar]
  5. Benhnia, M. R., McCausland, M. M., Su, H. P., Singh, K., Hoffmann, J., Davies, D. H., Felgner, P. L., Head, S., Sette, A. & other authors ( 2008; ). Redundancy and plasticity of neutralizing antibody responses are cornerstone attributes of the human immune response to the smallpox vaccine. J Virol 82, 3751–3768.[CrossRef]
    [Google Scholar]
  6. Boulter, E. A. & Appleyard, G. ( 1973; ). Differences between extracellular and intracellular forms of poxvirus and their implications. Prog Med Virol 16, 86–108.
    [Google Scholar]
  7. Davies, D. H., McCausland, M. M., Valdez, C., Huynh, D., Hernandez, J. E., Mu, Y., Hirst, S., Villarreal, L., Felgner, P. L. & Crotty, S. ( 2005; ). Vaccinia virus H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in mice. J Virol 79, 11724–11733.[CrossRef]
    [Google Scholar]
  8. Davies, D. H., Wyatt, L. S., Newman, F. K., Earl, P. L., Chun, S., Hernandez, J. E., Molina, D. M., Hirst, S., Moss, B. & other authors ( 2008; ). Antibody profiling by proteome microarray reveals the immunogenicity of the attenuated smallpox vaccine modified vaccinia virus ankara is comparable to that of Dryvax. J Virol 82, 652–663.[CrossRef]
    [Google Scholar]
  9. Edghill-Smith, Y., Venzon, D., Karpova, T., McNally, J., Nacsa, J., Tsai, W. P., Tryniszewska, E., Moniuszko, M., Manischewitz, J. & other authors ( 2003; ). Modeling a safer smallpox vaccination regimen, for human immunodeficiency virus type 1-infected patients, in immunocompromised macaques. J Infect Dis 188, 1181–1191.[CrossRef]
    [Google Scholar]
  10. Fenner, F., Henderson, D. A., Arita, I., Jezek, Z. & Ladnyi, I. D. ( 1988; ). Smallpox and its Eradication. Geneva: World Health Organisation.
  11. Ferrier-Rembert, A., Drillien, R., Tournier, J. N., Garin, D. & Crance, J. M. ( 2008; ). Short- and long-term immunogenicity and protection induced by non-replicating smallpox vaccine candidates in mice and comparison with the traditional 1st generation vaccine. Vaccine 26, 1794–1804.[CrossRef]
    [Google Scholar]
  12. Fogg, C., Lustig, S., Whitbeck, J. C., Eisenberg, R. J., Cohen, G. H. & Moss, B. ( 2004; ). Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. J Virol 78, 10230–10237.[CrossRef]
    [Google Scholar]
  13. Frey, S. E., Newman, F. K., Yan, L., Lottenbach, K. R. & Belshe, R. B. ( 2003; ). Response to smallpox vaccine in persons immunized in the distant past. JAMA 289, 3295–3299.[CrossRef]
    [Google Scholar]
  14. Greenberg, R. N., Kennedy, J. S., Clanton, D. J., Plummer, E. A., Hague, L., Cruz, J., Ennis, F. A., Blackwelder, W. C. & Hopkins, R. J. ( 2005; ). Safety and immunogenicity of new cell-cultured smallpox vaccine compared with calf-lymph derived vaccine: a blind, single-centre, randomised controlled trial. Lancet 365, 398–409.[CrossRef]
    [Google Scholar]
  15. Hammarlund, E., Lewis, M. W., Hansen, S. G., Strelow, L. I., Nelson, J. A., Sexton, G. J., Hanifin, J. M. & Slifka, M. K. ( 2003; ). Duration of antiviral immunity after smallpox vaccination. Nat Med 9, 1131–1137.[CrossRef]
    [Google Scholar]
  16. Harari, A., Bart, P. A., Stohr, W., Tapia, G., Garcia, M., Medjitna-Rais, E., Burnet, S., Cellerai, C., Erlwein, O. & other authors ( 2008; ). An HIV-1 clade C DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting T cell responses. J Exp Med 205, 63–77.[CrossRef]
    [Google Scholar]
  17. Hashizume, S., Yoshizawa, H., Morita, M. & Suzuki, K. ( 1985; ). Properties of attenuated mutant of vaccinia virus, LC16m8, derived from Listre strain. In Vaccinia Viruses as Vectors for Vaccine Antignens, pp. 87–99. New York: Elsevier Science Publishing Co.
  18. Heraud, J. M., Edghill-Smith, Y., Ayala, V., Kalisz, I., Parrino, J., Kalyanaraman, V. S., Manischewitz, J., King, L. R., Hryniewicz, A. & other authors ( 2006; ). Subunit recombinant vaccine protects against monkeypox. J Immunol 177, 2552–2564.[CrossRef]
    [Google Scholar]
  19. Hooper, J. W., Custer, D. M., Schmaljohn, C. S. & Schmaljohn, A. L. ( 2000; ). DNA vaccination with vaccinia virus L1R and A33R genes protects mice against a lethal poxvirus challenge. Virology 266, 329–339.[CrossRef]
    [Google Scholar]
  20. Hooper, J. W., Custer, D. M. & Thompson, E. ( 2003; ). Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. Virology 306, 181–195.[CrossRef]
    [Google Scholar]
  21. Hooper, J. W., Thompson, E., Wilhelmsen, C., Zimmerman, M., Ichou, M. A., Steffen, S. E., Schmaljohn, C. S., Schmaljohn, A. L. & Jahrling, P. B. ( 2004; ). Smallpox DNA vaccine protects nonhuman primates against lethal monkeypox. J Virol 78, 4433–4443.[CrossRef]
    [Google Scholar]
  22. Kennedy, J. S., Frey, S. E., Yan, L., Rothman, A. L., Cruz, J., Newman, F. K., Orphin, L., Belshe, R. B. & Ennis, F. A. ( 2004; ). Induction of human T cell-mediated immune responses after primary and secondary smallpox vaccination. J Infect Dis 190, 1286–1294.[CrossRef]
    [Google Scholar]
  23. Konishi, E., Kurane, I., Mason, P. W., Shope, R. E., Kanesa-Thasan, N., Smucny, J. J., Hoke, C. H., Jr & Ennis, F. A. ( 1998; ). Induction of Japanese encephalitis virus-specific cytotoxic T lymphocytes in humans by poxvirus-based JE vaccine candidates. Vaccine 16, 842–849.[CrossRef]
    [Google Scholar]
  24. Lai, C. F., Gong, S. C. & Esteban, M. ( 1991; ). The purified 14-kilodalton envelope protein of vaccinia virus produced in Escherichia coli induces virus immunity in animals. J Virol 65, 5631–5635.
    [Google Scholar]
  25. Law, M., Pütz, M. M. & Smith, G. L. ( 2005; ). An investigetion of the therapeutic value of vaccinia-immune IgG in a mouse pneumonia model. J Gen Virol 86, 991–1000.[CrossRef]
    [Google Scholar]
  26. Lustig, S., Fogg, C., Whitbeck, J. C., Eisenberg, R. J., Cohen, G. H. & Moss, B. ( 2005; ). Combinations of polyclonal or monoclonal antibodies to proteins of the outer membranes of the two infectious forms of vaccinia virus protect mice against a lethal respiratory challenge. J Virol 79, 13454–13462.[CrossRef]
    [Google Scholar]
  27. Mayr, A. & Munz, E. ( 1964; ). Changes in the vaccinia virus through continuing passages in chick embryo fibroblast cultures. Zentralbl Bakteriol [Orig] 195, 24–35 (in German).
    [Google Scholar]
  28. McCormack, S., Stohr, W., Barber, T., Bart, P. A., Harari, A., Moog, C., Ciuffreda, D., Cellerai, C., Cowen, M. & other authors ( 2008; ). EV02: a Phase I trial to compare the safety and immunogenicity of HIV DNA-C prime-NYVAC-C boost to NYVAC-C alone. Vaccine 26, 3162–3174.[CrossRef]
    [Google Scholar]
  29. Najera, J. L., Gomez, C. E., Domingo-Gil, E., Gherardi, M. M. & Esteban, M. ( 2006; ). Cellular and biochemical differences between two attenuated poxvirus vaccine candidates (MVA and NYVAC) and role of the C7L gene. J Virol 80, 6033–6047.[CrossRef]
    [Google Scholar]
  30. Ockenhouse, C. F., Sun, P. F., Lanar, D. E., Wellde, B. T., Hall, B. T., Kester, K., Stoute, J. A., Magill, A., Krzych, U. & other authors ( 1998; ). Phase I/IIa safety, immunogenicity, and efficacy trial of NYVAC-Pf7, a pox-vectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria. J Infect Dis 177, 1664–1673.[CrossRef]
    [Google Scholar]
  31. Parrino, J., McCurdy, L. H., Larkin, B. D., Gordon, I. J., Rucker, S. E., Enama, M. E., Koup, R. A., Roederer, M., Bailer, R. T. & other authors ( 2007; ). Safety, immunogenicity and efficacy of modified vaccinia Ankara (MVA) against Dryvax challenge in vaccinia-naive and vaccinia-immune individuals. Vaccine 25, 1513–1525.[CrossRef]
    [Google Scholar]
  32. Pulford, D. J., Gates, A., Bridge, S. H., Robinson, J. H. & Ulaeto, D. ( 2004; ). Differential efficacy of vaccinia virus envelope proteins administered by DNA immunisation in protection of BALB/c mice from a lethal intranasal poxvirus challenge. Vaccine 22, 3358–3366.[CrossRef]
    [Google Scholar]
  33. Putz, M. M., Alberini, I., Midgley, C. M., Manini, I., Montomoli, E. & Smith, G. L. ( 2005; ). Prevalence of antibodies to Vaccinia virus after smallpox vaccination in Italy. J Gen Virol 86, 2955–2960.[CrossRef]
    [Google Scholar]
  34. Putz, M. M., Midgley, C. M., Law, M. & Smith, G. L. ( 2006; ). Quantification of antibody responses against multiple antigens of the two infectious forms of Vaccinia virus provides a benchmark for smallpox vaccination. Nat Med 12, 1310–1315.[CrossRef]
    [Google Scholar]
  35. Rivers, T. M. ( 1931; ). Cultivation of vaccinia virus for Jennerian prophylaxis in man. J Exp Med 54, 453–461.[CrossRef]
    [Google Scholar]
  36. Smith, G. L. & McFadden, G. ( 2002; ). Smallpox: anything to declare? Nat Rev Immunol 2, 521–527.[CrossRef]
    [Google Scholar]
  37. Smith, G. L., Vanderplasschen, A. & Law, M. ( 2002; ). The formation and function of extracellular enveloped vaccinia virus. J Gen Virol 83, 2915–2931.
    [Google Scholar]
  38. Stienlauf, S., Shoresh, M., Solomon, A., Lublin-Tennenbaum, T., Atsmon, Y., Meirovich, Y. & Katz, E. ( 1999; ). Kinetics of formation of neutralizing antibodies against vaccinia virus following re-vaccination. Vaccine 17, 201–204.[CrossRef]
    [Google Scholar]
  39. Tartaglia, J., Perkus, M. E., Taylor, J., Norton, E. K., Audonnet, J. C., Cox, W. I., Davis, S. W., van der Hoeven, J., Meignier, B. & other authors ( 1992; ). NYVAC: a highly attenuated strain of vaccinia virus. Virology 188, 217–232.[CrossRef]
    [Google Scholar]
  40. Treanor, J., Wu, H., Liang, H. & Topham, D. J. ( 2006; ). Immune responses to vaccinia and influenza elicited during primary versus recent or distant secondary smallpox vaccination of adults. Vaccine 24, 6913–6923.[CrossRef]
    [Google Scholar]
  41. Xiao, Y., Aldaz-Carroll, L., Ortiz, A. M., Whitbeck, J. C., Alexander, E., Lou, H., Davis, H. L., Braciale, T. J., Eisenberg, R. J. & other authors ( 2007; ). A protein-based smallpox vaccine protects mice from vaccinia and ectromelia virus challenges when given as a prime and single boost. Vaccine 25, 1214–1224.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.2008/004440-0
Loading
/content/journal/jgv/10.1099/vir.0.2008/004440-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 2992 - 2997

Neutralizing activity of human sera after antibody depletion [PDF](26 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error