1887

Abstract

Interactions between the major proteins of (ClYVV) were investigated using a GAL4 transcription activator-based yeast two-hybrid system (YTHS). Self-interactions manifested by VPg and HCPro and an interaction between NIb and NIaPro were observed in ClYVV. In addition, a strong HCPro–VPg interaction was detected by both YTHS and by far-Western blot analysis in ClYVV. A potyvirus HCPro–VPg interaction has not been reported previously. Using YTHS, domains in ClYVV for the VPg self-interaction and the HCPro–VPg interaction were mapped. The VPg C-terminal region (38 amino acids) was important for the VPg–VPg interaction and the central 19 amino acids were needed for the HCPro–VPg interaction.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19312-0
2003-10-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/10/vir842861.html?itemId=/content/journal/jgv/10.1099/vir.0.19312-0&mimeType=html&fmt=ahah

References

  1. Anandalakshmi, R., Pruss, G. J., Ge, X., Marathe, R., Mallory, A. C., Smith, T. H. & Vance, V. B. ( 1998; ). A viral suppressor of gene silencing in plants. Proc Natl Acad Sci U S A 95, 13079–13084.[CrossRef]
    [Google Scholar]
  2. Andersen, K. & Johansen, I. E. ( 1998; ). A single conserved amino acid in the coat protein gene of pea seed-borne mosaic potyvirus modulates the ability of the virus to move systemically in Chenopodium quinoa. Virology 241, 304–311.[CrossRef]
    [Google Scholar]
  3. Atreya, C. D., Raccah, B. & Pirone, T. P. ( 1990; ). A point mutation in the coat protein abolishes aphid transmissibility of a potyvirus. Virology 178, 161–165.[CrossRef]
    [Google Scholar]
  4. Brigneti, G., Voinnet, O., Li, W.-X., Ji, L.-H., Ding, S.-W. & Baulcombe, D. C. ( 1998; ). Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J 17, 6739–6746.[CrossRef]
    [Google Scholar]
  5. Carrington, J. C., Cary, S. M., Parks, T. D. & Dougherty, W. G. ( 1989; ). A second proteinase encoded by a plant potyvirus genome. EMBO J 8, 365–370.
    [Google Scholar]
  6. Carrington, J. C., Jensen, P. E. & Schaad, M. C. ( 1998; ). Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. Plant J 14, 393–400.[CrossRef]
    [Google Scholar]
  7. Choi, I. R., Stenger, D. C. & French, R. ( 2000; ). Multiple interactions among proteins encoded by the mite-transmitted wheat streak mosaic tritimovirus. Virology 267, 185–198.[CrossRef]
    [Google Scholar]
  8. Cronin, S., Verchot, J., Haldeman-Cahill, R., Schaad, M. C. & Carrington, J. C. ( 1995; ). Long distance movement factor: a transport function of the potyvirus helper component proteinase. Plant Cell 7, 549–559.[CrossRef]
    [Google Scholar]
  9. Dolja, V. V., Haldeman, R., Robertson, N. L., Dougherty, W. G. & Carrington, J. C. ( 1994; ). Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants. EMBO J 13, 1482–1491.
    [Google Scholar]
  10. Dolja, V. V., Haldeman-Cahill, R., Montgomery, A. E., Vandenbosch, K. A. & Carrington, J. C. ( 1995; ). Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus. Virology 206, 1007–1016.[CrossRef]
    [Google Scholar]
  11. Duprat, A., Caranta, C., Revers, F., Menand, B., Browning, K. S. & Robaglia, C. ( 2002; ). The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J 32, 927–934.[CrossRef]
    [Google Scholar]
  12. Gietz, R. D., Schiestl, R. H., Willems, A. R. & Woods, R. A. ( 1995; ). Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355–360.[CrossRef]
    [Google Scholar]
  13. Guo, D., Merits, A. & Saarma, M. ( 1999; ). Self-association and mapping of interaction domains of helper component-proteinase of potato A potyvirus. J Gen Virol 80, 1127–1131.
    [Google Scholar]
  14. Guo, D., Rajamaki, M., Saarma, M. & Valkonen, J. P. T. ( 2001; ). Towards a protein interaction map of potyvirus: protein interaction matrixes of two potyviruses based on the yeast two-hybrid system. J Gen Virol 82, 935–939.
    [Google Scholar]
  15. Hong, Y., Levay, K., Murphy, J. F., Klein, P. G., Shaw, J. G. & Hunt, A. G. ( 1995; ). A potyvirus polymerase interacts with the viral coat protein and VPg in yeast cells. Virology 214, 159–166.[CrossRef]
    [Google Scholar]
  16. Inoue, M., Hosaka, M. & Matsumoto, M. ( 1984; ). Antigenic characterization of a Japanese common strain of Tobacco mosaic virus by monoclonal antibodies. Ann Phytopath Soc Jpn 50, 19–26.[CrossRef]
    [Google Scholar]
  17. Kasschau, K. D. & Carrington, J. C. ( 1998; ). A counterdefensive strategy of plant viruses: suppression of posttranslational gene silencing. Cell 95, 461–470.[CrossRef]
    [Google Scholar]
  18. Kasschau, K. D., Cronin, S. & Carrington, J. C. ( 1997; ). Genome amplification and long-distance movement functions associated with the central domain of tobacco etch potyvirus helper component-proteinase. Virology 228, 251–262.[CrossRef]
    [Google Scholar]
  19. Keller, K. E., Johansen, I. E., Martin, R. R. & Hampton, R. O. ( 1998; ). Potyvirus genome-linked protein (VPg) determines pea seed-borne mosaic virus pathotype-specific virulence in Pisum sativum. Mol Plant–Microbe Interact 11, 124–130.[CrossRef]
    [Google Scholar]
  20. Klein, P. G., Klein, R. R., Rodriguez-Cerezo, E., Hunt, A. G. & Shaw, J. G. ( 1994; ). Mutational analysis of the tobacco vein mottling virus genome. Virology 204, 759–769.[CrossRef]
    [Google Scholar]
  21. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680.[CrossRef]
    [Google Scholar]
  22. Lellis, A. D., Kasschau, K. D., Whitham, S. A. & Carrington, J. C. ( 2002; ). Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyirus infection. Curr Biol 12, 1046–1051.[CrossRef]
    [Google Scholar]
  23. Leonard, S., Plante, D., Wittmann, S., Daigneault, N., Fortin, M. G. & Laliberte, J. F. ( 2000; ). Complex formation between potyvirus VPg and translation eukaryotic factor 4E correlates with virus infectivity. J Virol 74, 7730–7737.[CrossRef]
    [Google Scholar]
  24. Li, X. H., Valdez, P., Olvera, R. E. & Carrington, J. C. ( 1997; ). Functions of the tobacco etch virus RNA polymerase (NIb): subcellular transport and protein–protein interaction with VPg/proteinase (NIa). J Virol 71, 1598–1607.
    [Google Scholar]
  25. Lopez, L., Urzainqui, A., Dominguez, E. & Garcia, J. A. ( 2001; ). Identification of an N-terminal domain of the plum pox potyvirus CI RNA helicase involved in self-interaction in a yeast two-hybrid system. J Gen Virol 82, 677–686.
    [Google Scholar]
  26. Lopez-Moya, J. J. & Pirone, T. P. ( 1998; ). Charge changes near the N terminus of the coat protein of two potyviruses affect virus movement. J Gen Virol 79, 161–165.
    [Google Scholar]
  27. Maia, I. G. & Bernardi, F. ( 1996; ). Nucleic acid-binding properties of a bacterially expressed potato virus Y helper component-proteinase. J Gen Virol 77, 869–877.[CrossRef]
    [Google Scholar]
  28. Marathe, R., Anandalakshmi, R., Smith, T. H., Pruss, G. J. & Vance, V. B. ( 2000; ). RNA viruses as inducers, suppressors and targets of post-transcriptional gene silencing. Plant Mol Biol 43, 295–306.[CrossRef]
    [Google Scholar]
  29. Merits, A., Guo, D. & Saarma, M. ( 1998; ). VPg, coat protein and five non-structural proteins of potato A potyvirus bind RNA in a sequence-unspecific manner. J Gen Virol 79, 3123–3127.
    [Google Scholar]
  30. Merits, A., Guo, D., Järvekülg, L. & Saarma, M. ( 1999; ). Biochemical and genetic evidence for interactions between potato A potyvirus-encoded proteins P1 and P3 and proteins of the putative replication complex. Virology 263, 15–22.[CrossRef]
    [Google Scholar]
  31. Murphy, J. F., Rhoads, R. E., Hunt, A. G. & Shaw, J. G. ( 1990; ). The VPg of tobacco etch virus RNA is the 49-kDa proteinase or the N-terminal 24-kDa part of the proteinase. Virology 178, 285–288.[CrossRef]
    [Google Scholar]
  32. Murphy, J. F., Rychlik, W., Rhoads, R. E., Hunt, A. G. & Shaw, J. G. ( 1991; ). A tyrosine residue in the small nuclear inclusion protein of tobacco vein mottling virus links the VPg to the viral RNA. J Virol 65, 511–513.
    [Google Scholar]
  33. Murphy, J. F., Klein, P. G., Hunt, A. G. & Shaw, J. G. ( 1996; ). Replacement of the tyrosine residue that links a potyviral VPg to the viral RNA is lethal. Virology 220, 535–538.[CrossRef]
    [Google Scholar]
  34. Nicolas, O., Dunnington, S. W., Gotow, L. F., Pirone, T. P. & Hellmann, G. M. ( 1997; ). Variations in the VPg protein allow a potyvirus to overcome va gene resistance in tobacco. Virology 237, 452–459.[CrossRef]
    [Google Scholar]
  35. Oruetxebarria, I., Guo, D., Merits, A., Makinen, K., Saarma, M. & Valkonen, J. P. T. ( 2001; ). Identification of the genome-linked protein in virions of Potato virus A, with comparison to other members in genus Potyvirus. Virus Res 73, 103–112.[CrossRef]
    [Google Scholar]
  36. Rajamäki, M. & Valkonen, J. P. T. ( 1999; ). The 6K2 protein and the VPg of potato virus A are determinants of systemic infection in Nicandra physaloides. Mol Plant Microbe Interact 12, 1074–1081.[CrossRef]
    [Google Scholar]
  37. Rajamäki, M. & Valkonen, J. P. T. ( 2002; ). Viral genome-linked protein (VPg) controls accumulation and phloem-loading of a potyvirus in inoculated potato leaves. Mol Plant Microbe Interact 15, 136–149.
    [Google Scholar]
  38. Rajamäki, M. & Valkonen, J. P. T. ( 2003; ). Localization of a potyvirus and the viral genome-linked protein in wild potato leaves at an early stage of systemic infection. Mol Plant Microbe Interact 15, 136–149.
    [Google Scholar]
  39. Revers, F., Le Gall, O., Candresse, T. & Maule, A. J. ( 1999; ). New advances in understanding the molecular biology of plant/potyvirus interactions. Mol Plant Microbe Interact 12, 367–376.[CrossRef]
    [Google Scholar]
  40. Riechmann, J. L., Lain, S. & Garcia, J. A. ( 1992; ). Highlights and prospects of potyvirus molecular biology. J Gen Virol 73, 1–16.[CrossRef]
    [Google Scholar]
  41. Rojas, M. R., Zerbini, F. M., Allison, R. F., Gilbertson, R. L. & Lucas, W. J. ( 1997; ). Capsid protein and helper component-proteinase function as potyvirus cell-to-cell movement proteins. Virology 237, 283–298.[CrossRef]
    [Google Scholar]
  42. Ruffel, S., Dussault, M. H., Palloix, A., Moury, B. & Bendahmane, A. ( 2002; ). A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J 32, 1067–1075.[CrossRef]
    [Google Scholar]
  43. Saenz, P., Salvador, B., Simon-Mateo, C., Kasschau, K., Carrington, J. C. & Garcia, J. A. ( 2002; ). Host-specific involvement of the HC protein in the long distance movement of potyviruses. J Virol 76, 1922–1931.[CrossRef]
    [Google Scholar]
  44. Schaad, M. C., Haldeman-Cahill, R., Cronin, S. & Carrington, J. C. ( 1996; ). Analysis of the VPg-proteinase (NIa) encoded by tobacco etch potyvirus: effects of mutations on subcellular transport, proteolytic processing, and genome amplification. J Virol 70, 7039–7048.
    [Google Scholar]
  45. Schaad, M. C., Lellis, A. D. & Carrington, J. C. ( 1997; ). VPg of tobacco etch potyvirus is a host genotype-specific determinant for long-distance movement. J Virol 71, 8624–8631.
    [Google Scholar]
  46. Schaad, M. C., Anderberg, R. J. & Carrington, J. C. ( 2000; ). Strain-specific interaction of the tobacco etch virus NIa protein with the translation initiation factor eIF4E in the yeast two-hybrid system. Virology 273, 300–306.[CrossRef]
    [Google Scholar]
  47. Shahabuddin, M., Shaw, J. G. & Rhoads, R. E. ( 1988; ). Mapping of the tobacco vein mottling virus VPg cistron. Virology 163, 635–637.[CrossRef]
    [Google Scholar]
  48. Takahashi, Y., Takahashi, T. & Uyeda, I. ( 1997; ). A cDNA clone to clover yellow vein potyvirus genome is highly infectious. Virus Genes 14, 235–243.[CrossRef]
    [Google Scholar]
  49. Thornbury, D. W., Hellman, G. M., Rhoads, R. E. & Pirone, T. P. ( 1985; ). Purification and characterization of potyvirus helper component. Virology 144, 260–267.[CrossRef]
    [Google Scholar]
  50. Urcuqui-Inchima, S., Walter, J., Drugeon, G., German-Retana, S., Haenni, A. L., Candresse, T., Bernardi, F. & Le Gall, O. ( 1999; ). Potyvirus helper component-proteinase self-interaction in the yeast two-hybrid system and delineation of the interaction domain involved . Virology 258, 95–99.[CrossRef]
    [Google Scholar]
  51. Uyeda, I., Kojima, M. & Murayama, D. ( 1975; ). Purification and serology of bean yellow mosaic virus. Ann Phytopath Soc Jpn 41, 192–203.[CrossRef]
    [Google Scholar]
  52. Wang, R. Y. & Pirone, T. P. ( 1999; ). Purification and characterization of turnip mosaic virus helper component protein. Phytopathology 89, 564–567.[CrossRef]
    [Google Scholar]
  53. Wittmann, S., Chatel, H., Fortin, M. G. & Laliberte, J. F. ( 1997; ). Interaction of the viral protein linked genome of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 234, 84–92.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19312-0
Loading
/content/journal/jgv/10.1099/vir.0.19312-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error