1887

Abstract

We isolated and characterized a novel virulent bacteriophage, IME-EFm1, specifically infecting multidrug-resistant . IME-EFm1 is morphologically similar to members of the family . It was found capable of lysing a wide range of our collections, including two strains resistant to vancomycin. One-step growth tests revealed the host lysis activity of phage IME-EFm1, with a latent time of 30 min and a large burst size of 116 p.f.u. per cell. These biological characteristics suggested that IME-EFm1 has the potential to be used as a therapeutic agent. The complete genome of IME-EFm1 was 42 597 bp, and was linear, with terminally non-redundant dsDNA and a G+C content of 35.2 mol%. The termini of the phage genome were determined with next-generation sequencing and were further confirmed by nuclease digestion analysis. To our knowledge, this is the first report of a complete genome sequence of a bacteriophage infecting . IME-EFm1 exhibited a low similarity to other phages in terms of genome organization and structural protein amino acid sequences. The coding region corresponded to 90.7 % of the genome; 70 putative ORFs were deduced and, of these, 29 could be functionally identified based on their homology to previously characterized proteins. A predicted metallo-β-lactamase gene was detected in the genome sequence. The identification of an antibiotic resistance gene emphasizes the necessity for complete genome sequencing of a phage to ensure it is free of any undesirable genes before use as a therapeutic agent against bacterial pathogens.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.067553-0
2014-11-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/11/2565.html?itemId=/content/journal/jgv/10.1099/vir.0.067553-0&mimeType=html&fmt=ahah

References

  1. Abedon S.. (editor) ( 2008;). Bacteriophage Ecology: Population Growth, Evolution and Impact of Bacterial Viruses. Advances in Molecular and Cellular Microbiology. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  2. Abedon S.. ( 2011;). Phage therapy pharmacology: calculating phage dosing. . Adv Appl Microbiol 77:, 1–40. [CrossRef][PubMed]
    [Google Scholar]
  3. Adams M. H.. ( 1959;). Methods of study of bacterial viruses. . In Bacteriophages, pp. 445–447. Edited by Adams M. H... New York:: Interscience;.
    [Google Scholar]
  4. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  5. Anisimov A. P., Amoako K. K.. ( 2006;). Treatment of plague: promising alternatives to antibiotics. . J Med Microbiol 55:, 1461–1475. [CrossRef][PubMed]
    [Google Scholar]
  6. Arias C. A., Murray B. E.. ( 2012;). The rise of the Enterococcus: beyond vancomycin resistance. . Nat Rev Microbiol 10:, 266–278. [CrossRef][PubMed]
    [Google Scholar]
  7. Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., Formsma K., Gerdes S., Glass E. M.. & other authors ( 2008;). The rast Server: rapid annotations using subsystems technology. . BMC Genomics 9:, 75. [CrossRef][PubMed]
    [Google Scholar]
  8. Bateman A., Coin L., Durbin R., Finn R. D., Hollich V., Griffiths-Jones S., Khanna A., Marshall M., Moxon S.. & other authors ( 2004;). The Pfam protein families database. . Nucleic Acids Res 32: (suppl 1), D138–D141. [CrossRef][PubMed]
    [Google Scholar]
  9. Biswas B., Adhya S., Washart P., Paul B., Trostel A. N., Powell B., Carlton R., Merril C. R.. ( 2002;). Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. . Infect Immun 70:, 204–210. [CrossRef][PubMed]
    [Google Scholar]
  10. Brabban A. D., Hite E., Callaway T. R.. ( 2005;). Evolution of foodborne pathogens via temperate bacteriophage-mediated gene transfer. . Foodborne Pathog Dis 2:, 287–303. [CrossRef][PubMed]
    [Google Scholar]
  11. Brueggemann A. B., Pai R., Crook D. W., Beall B.. ( 2007;). Vaccine escape recombinants emerge after pneumococcal vaccination in the United States. . PLoS Pathog 3:, e168. [CrossRef][PubMed]
    [Google Scholar]
  12. Carlson K.. ( 2005;). Appendix: working with bacteriophages: common techniques and methodological approaches. . In Bacteriophages: Biology and Applications, pp. 437–494. Edited by Kutter E., Sulakvelidze A... Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  13. CLSI ( 2012;). Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved standard, 11th edn, M02-A11. Wayne, PA: Clinical and Laboratory Standards Institute.
    [Google Scholar]
  14. Courchesne N. M., Parisien A., Lan C. Q.. ( 2009;). Production and application of bacteriophage and bacteriophage-encoded lysins. . Recent Pat Biotechnol 3:, 37–45. [CrossRef][PubMed]
    [Google Scholar]
  15. de Been M., van Schaik W., Cheng L., Corander J., Willems R. J.. ( 2013;). Recent recombination events in the core genome are associated with adaptive evolution in Enterococcus faecium. . Genome Biol Evol 5:, 1524–1535. [CrossRef][PubMed]
    [Google Scholar]
  16. Debarbieux L.. ( 2008;). [Experimental phage therapy in the beginning of the 21st century]. . Med Mal Infect 38:, 421–425 (in French). [CrossRef][PubMed]
    [Google Scholar]
  17. Desiere F., Lucchini S., Canchaya C., Ventura M., Brüssow H.. ( 2002;). Comparative genomics of phages and prophages in lactic acid bacteria. . Antonie van Leeuwenhoek 82:, 73–91. [CrossRef][PubMed]
    [Google Scholar]
  18. Ellis E. L., Delbrück M.. ( 1939;). The growth of bacteriophage. . J Gen Physiol 22:, 365–384. [CrossRef][PubMed]
    [Google Scholar]
  19. Fard R. M. N., Barton M. D., Arthur J. L., Heuzenroeder M. W.. ( 2010;). Whole-genome sequencing and gene mapping of a newly isolated lytic enterococcal bacteriophage EFRM31. . Arch Virol 155:, 1887–1891. [CrossRef][PubMed]
    [Google Scholar]
  20. Gallet R., Shao Y., Wang I. N.. ( 2009;). High adsorption rate is detrimental to bacteriophage fitness in a biofilm-like environment. . BMC Evol Biol 9:, 241. [CrossRef][PubMed]
    [Google Scholar]
  21. Hemminga M. A., Vos W. L., Nazarov P. V., Koehorst R. B., Wolfs C. J., Spruijt R. B., Stopar D.. ( 2010;). Viruses: incredible nanomachines. New advances with filamentous phages. . Eur Biophys J 39:, 541–550. [CrossRef][PubMed]
    [Google Scholar]
  22. ICTV ( 2005;). Virus Taxonomy: Classification and Nomenclature of Viruses: Eighth Report of the International Committee on Taxonomy of Viruses. Edited by Fauquet C. M. , Mayo M. A.., J. Maniloff, Desselberger U., Ball L. A... London:: Elsevier;.
    [Google Scholar]
  23. Krogh S., Jørgensen S. T., Devine K. M.. ( 1998;). Lysis genes of the Bacillus subtilis defective prophage PBSX. . J Bacteriol 180:, 2110–2117.[PubMed]
    [Google Scholar]
  24. Kutter E.. ( 2009;). Phage host range and efficiency of plating. . Methods Mol Biol 501:, 141–149. [CrossRef][PubMed]
    [Google Scholar]
  25. Li S., Fan H., An X., Fan H., Jiang H., Chen Y., Tong Y.. ( 2014;). Scrutinizing virus genome termini by high-throughput sequencing. . PLoS ONE 9:, e85806. [CrossRef][PubMed]
    [Google Scholar]
  26. Lima-Mendez G., Toussaint A., Leplae R.. ( 2007;). Analysis of the phage sequence space: the benefit of structured information. . Virology 365:, 241–249. [CrossRef][PubMed]
    [Google Scholar]
  27. Lowe T. M., Eddy S. R.. ( 1997;). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. . Nucleic Acids Res 25:, 955–964. [CrossRef][PubMed]
    [Google Scholar]
  28. Lu S., Le S., Tan Y., Zhu J., Li M., Rao X., Zou L., Li S., Wang J.. & other authors ( 2013;). Genomic and proteomic analyses of the terminally redundant genome of the Pseudomonas aeruginosa phage PaP1: establishment of genus PaP1-like phages. . PLoS ONE 8:, e62933. [CrossRef][PubMed]
    [Google Scholar]
  29. Marchler-Bauer A., Anderson J. B., Cherukuri P. F., DeWeese-Scott C., Geer L. Y., Gwadz M., He S., Hurwitz D. I., Jackson J. D.. & other authors ( 2005;). CDD: a Conserved Domain Database for protein classification. . Nucleic Acids Res 33: (Suppl. 1), D192–D196. [CrossRef][PubMed]
    [Google Scholar]
  30. Marchler-Bauer A., Anderson J. B., Chitsaz F., Derbyshire M. K., DeWeese-Scott C., Fong J. H., Geer L. Y., Geer R. C., Gonzales N. R.. & other authors ( 2009;). CDD: specific functional annotation with the Conserved Domain Database. . Nucleic Acids Res 37: (suppl 1), D205–D210. [CrossRef][PubMed]
    [Google Scholar]
  31. Marti E., Variatza E., Balcázar J. L.. ( 2013;). Bacteriophages as a reservoir of extended. . Clin Microbiol Infect 20:, O456–O459. [CrossRef][PubMed]
    [Google Scholar]
  32. Matsuzaki S., Rashel M., Uchiyama J., Sakurai S., Ujihara T., Kuroda M., Imai S., Ikeuchi M., Tani T.. & other authors ( 2005;). Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. . J Infect Chemother 11:, 211–219. [CrossRef][PubMed]
    [Google Scholar]
  33. Muniesa M., García A., Miró E., Mirelis B., Prats G., Jofre J., Navarro F.. ( 2004;). Bacteriophages and diffusion of β-lactamase genes. . Emerg Infect Dis 10:, 1134–1137. [CrossRef][PubMed]
    [Google Scholar]
  34. Pajunen M., Kiljunen S., Skurnik M.. ( 2000;). Bacteriophage φYeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7. . J Bacteriol 182:, 5114–5120. [CrossRef][PubMed]
    [Google Scholar]
  35. Parsley L. C., Consuegra E. J., Kakirde K. S., Land A. M., Harper W. F. Jr, Liles M. R.. ( 2010;). Identification of diverse antimicrobial resistance determinants carried on bacterial, plasmid, or viral metagenomes from an activated sludge microbial assemblage. . Appl Environ Microbiol 76:, 3753–3757. [CrossRef][PubMed]
    [Google Scholar]
  36. Pastagia M., Schuch R., Fischetti V. A., Huang D. B.. ( 2013;). Lysins: the arrival of pathogen-directed anti-infectives. . J Med Microbiol 62:, 1506–1516. [CrossRef][PubMed]
    [Google Scholar]
  37. Petrovski S., Seviour R. J., Tillett D.. ( 2011;). Genome sequence and characterization of the Tsukamurella bacteriophage TPA2. . Appl Environ Microbiol 77:, 1389–1398. [CrossRef][PubMed]
    [Google Scholar]
  38. Raytcheva D. A., Haase-Pettingell C., Piret J. M., King J. A.. ( 2011;). Intracellular assembly of cyanophage Syn5 proceeds through a scaffold-containing procapsid. . J Virol 85:, 2406–2415. [CrossRef][PubMed]
    [Google Scholar]
  39. Reese M. G.. ( 2001;). Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. . Comput Chem 26:, 51–56. [CrossRef][PubMed]
    [Google Scholar]
  40. Rosseel T., Scheuch M., Höper D., De Regge N., Caij A. B., Vandenbussche F., Van Borm S.. ( 2012;). DNase SISPA-next generation sequencing confirms Schmallenberg virus in Belgian field samples and identifies genetic variation in Europe. . PLoS ONE 7:, e41967. [CrossRef][PubMed]
    [Google Scholar]
  41. Salifu S. P., Valero-Rello A., Campbell S. A., Inglis N. F., Scortti M., Foley S., Vázquez-Boland J. A.. ( 2013;). Genome and proteome analysis of phage E3 infecting the soil-borne actinomycete Rhodococcus equi. . Environ Microbiol Rep 5:, 170–178. [CrossRef][PubMed]
    [Google Scholar]
  42. Sambrook J., Russell D.. ( 2001;). Molecular Cloning: A Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  43. Solovyev V., Salamov A.. ( 2011;). Automatic annotation of microbial genomes and metagenomic sequences. . In Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies, pp. 61–78. Edited by Li R. W. .. Hauppauge, NY:: Nova Science Publishers;.
    [Google Scholar]
  44. Sullivan M. J., Petty N. K., Beatson S. A.. ( 2011;). Easyfig: a genome comparison visualizer. . Bioinformatics 27:, 1009–1010. [CrossRef][PubMed]
    [Google Scholar]
  45. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  46. Tatusov R. L., Galperin M. Y., Natale D. A., Koonin E. V.. ( 2000;). The COG database: a tool for genome-scale analysis of protein functions and evolution. . Nucleic Acids Res 28:, 33–36. [CrossRef][PubMed]
    [Google Scholar]
  47. Wang I.-N., Smith D. L., Young R.. ( 2000;). Holins: the protein clocks of bacteriophage infections. . Annu Rev Microbiol 54:, 799–825. [CrossRef][PubMed]
    [Google Scholar]
  48. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  49. Wilcox S. A., Toder R., Foster J. W.. ( 1996;). Rapid isolation of recombinant lambda phage DNA for use in fluorescence in situ hybridization. . Chromosome Res 4:, 397–404. [CrossRef][PubMed]
    [Google Scholar]
  50. Witte W.. ( 2004;). International dissemination of antibiotic resistant strains of bacterial pathogens. . Infect Genet Evol 4:, 187–191. [CrossRef][PubMed]
    [Google Scholar]
  51. Yele A. B., Thawal N. D., Sahu P. K., Chopade B. A.. ( 2012;). Novel lytic bacteriophage AB7-IBB1 of Acinetobacter baumannii: isolation, characterization and its effect on biofilm. . Arch Virol 157:, 1441–1450. [CrossRef][PubMed]
    [Google Scholar]
  52. Zhu J., Rao X., Tan Y., Xiong K., Hu Z., Chen Z., Jin X., Li S., Chen Y., Hu F.. ( 2010;). Identification of lytic bacteriophage MmP1, assigned to a new member of T7-like phages infecting Morganella morganii. . Genomics 96:, 167–172. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.067553-0
Loading
/content/journal/jgv/10.1099/vir.0.067553-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error