1887

Abstract

The morphogenesis of viruses belonging to the genus in the family is still poorly understood despite decades-long investigations. However, we recently provided evidence that 2C gives specificity to poliovirus encapsidation through an interaction with capsid protein VP3. The polypeptide 2C is a highly conserved non-structural protein of enteroviruses with important roles in RNA replication, encapsidation and uncoating. We have identified a site (K279/R280) near the C terminus of the polypeptide that is required for morphogenesis. The aim of the current project was to search for additional functional sites near the C terminus of the 2C polypeptide, with particular interest in those that are required for encapsidation. We selected for analysis a cysteine-rich site of the polypeptide and constructed four mutants in which cysteines or a histidine was changed to an alanine. The RNA transcripts were transfected into HeLa cells yielding two lethal, one temperature-sensitive and one quasi-infectious mutants. All four mutants exhibited normal protein translation and three of them possessed severe RNA replication defects. The quasi-infectious mutant (C286A) yielded variants with a pseudo-reversion at the original site (A286D), but some also contained one additional mutation: A138V or M293V. The temperature-sensitive mutant (C272A/H273A) exhibited an encapsidation and possibly also an uncoating defect at 37 °C. Variants of this mutant revealed suppressor mutations at three different sites in the 2C polypeptide: A138V, M293V and K295R. We concluded that the cysteine-rich site near the C terminus of 2C is involved in encapsidation, possibly through an interaction with an upstream segment located between boxes A and B of the nucleotide-binding domain.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.062497-0
2014-06-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/6/1255.html?itemId=/content/journal/jgv/10.1099/vir.0.062497-0&mimeType=html&fmt=ahah

References

  1. Adams P., Kandiah E., Effantin G., Steven A. C., Ehrenfeld E.. ( 2009; ). Poliovirus 2C protein forms homo-oligomeric structures required for ATPase activity. . J Biol Chem 284:, 22012–22021. [CrossRef] [PubMed]
    [Google Scholar]
  2. Aldabe R., Carrasco L.. ( 1995; ). Induction of membrane proliferation by poliovirus proteins 2C and 2BC. . Biochem Biophys Res Commun 206:, 64–76. [CrossRef] [PubMed]
    [Google Scholar]
  3. Baltera R. F. Jr, Tershak D. R.. ( 1989; ). Guanidine-resistant mutants of poliovirus have distinct mutations in peptide 2C. . J Virol 63:, 4441–4444.[PubMed]
    [Google Scholar]
  4. Banerjee R., Echeverri A., Dasgupta A.. ( 1997; ). Poliovirus-encoded 2C polypeptide specifically binds to the 3′-terminal sequences of viral negative-strand RNA. . J Virol 71:, 9570–9578.[PubMed]
    [Google Scholar]
  5. Banerjee R., Weidman M. K., Echeverri A., Kundu P., Dasgupta A.. ( 2004; ). Regulation of poliovirus 3C protease by the 2C polypeptide. . J Virol 78:, 9243–9256. [CrossRef] [PubMed]
    [Google Scholar]
  6. Barton D. J., Flanegan J. B.. ( 1997; ). Synchronous replication of poliovirus RNA: initiation of negative-strand RNA synthesis requires the guanidine-inhibited activity of protein 2C. . J Virol 71:, 8482–8489.[PubMed]
    [Google Scholar]
  7. Borden K. L. B.. ( 2000; ). RING domains: master builders of molecular scaffolds?. J Mol Biol 295:, 1103–1112. [CrossRef] [PubMed]
    [Google Scholar]
  8. Cho M. W., Teterina N., Egger D., Bienz K., Ehrenfeld E.. ( 1994; ). Membrane rearrangement and vesicle induction by recombinant poliovirus 2C and 2BC in human cells. . Virology 202:, 129–145. [CrossRef] [PubMed]
    [Google Scholar]
  9. Coleman J. E.. ( 1992; ). Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. . Annu Rev Biochem 61:, 897–946. [CrossRef] [PubMed]
    [Google Scholar]
  10. Cuconati A., Xiang W., Lahser F., Pfister T., Wimmer E.. ( 1998; ). A protein linkage map of the P2 nonstructural proteins of poliovirus. . J Virol 72:, 1297–1307.[PubMed]
    [Google Scholar]
  11. Echeverri A., Banerjee R., Dasgupta A.. ( 1998; ). Amino-terminal region of poliovirus 2C protein is sufficient for membrane binding. . Virus Res 54:, 217–223. [CrossRef] [PubMed]
    [Google Scholar]
  12. Goodfellow I., Chaudhry Y., Richardson A., Meredith J., Almond J. W., Barclay W., Evans D. J.. ( 2000; ). Identification of a cis-acting replication element within the poliovirus coding region. . J Virol 74:, 4590–4600. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kentsis A., Borden K. L.. ( 2000; ). Construction of macromolecular assemblages in eukaryotic processes and their role in human disease: linking RINGs together. . Curr Protein Pept Sci 1:, 49–73. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kim S., Lee J., Ryu W. S.. ( 2009; ). Four conserved cysteine residues of the hepatitis B virus polymerase are critical for RNA pregenome encapsidation. . J Virol 83:, 8032–8040. [CrossRef] [PubMed]
    [Google Scholar]
  15. Li J. P., Baltimore D.. ( 1988; ). Isolation of poliovirus 2C mutants defective in viral RNA synthesis. . J Virol 62:, 4016–4021.[PubMed]
    [Google Scholar]
  16. Li J. P., Baltimore D.. ( 1990; ). An intragenic revertant of a poliovirus 2C mutant has an uncoating defect. . J Virol 64:, 1102–1107.[PubMed]
    [Google Scholar]
  17. Liu Y., Wang C., Mueller S., Paul A. V., Wimmer E., Jiang P.. ( 2010; ). Direct interaction between two viral proteins, the nonstructural protein 2C and the capsid protein VP3, is required for enterovirus morphogenesis. . PLoS Pathog 6:, e1001066. [CrossRef] [PubMed]
    [Google Scholar]
  18. Mirzayan C., Wimmer E.. ( 1994; ). Biochemical studies on poliovirus polypeptide 2C: evidence for ATPase activity. . Virology 199:, 176–187. [CrossRef] [PubMed]
    [Google Scholar]
  19. Molla A., Paul A. V., Wimmer E.. ( 1991; ). Cell-free, de novo synthesis of poliovirus. . Science 254:, 1647–1651. [CrossRef] [PubMed]
    [Google Scholar]
  20. Paul A. V., Molla A., Wimmer E.. ( 1994; ). Studies of a putative amphipathic helix in the N-terminus of poliovirus protein 2C. . Virology 199:, 188–199. [CrossRef] [PubMed]
    [Google Scholar]
  21. Paul A. V., Rieder E., Kim D. W., van Boom J. H., Wimmer E.. ( 2000; ). Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg. . J Virol 74:, 10359–10370. [CrossRef] [PubMed]
    [Google Scholar]
  22. Pfister T., Wimmer E.. ( 1999; ). Characterization of the nucleoside triphosphatase activity of poliovirus protein 2C reveals a mechanism by which guanidine inhibits poliovirus replication. . J Biol Chem 274:, 6992–7001. [CrossRef] [PubMed]
    [Google Scholar]
  23. Pfister T., Jones K. W., Wimmer E.. ( 2000; ). A cysteine-rich motif in poliovirus protein 2CATPase is involved in RNA replication and binds zinc in vitro. . J Virol 74:, 334–343. [CrossRef] [PubMed]
    [Google Scholar]
  24. Pincus S. E., Wimmer E.. ( 1986; ). Production of guanidine-resistant and -dependent poliovirus mutants from cloned cDNA: mutations in polypeptide 2C are directly responsible for altered guanidine sensitivity. . J Virol 60:, 793–796.[PubMed]
    [Google Scholar]
  25. Rodríguez P. L., Carrasco L.. ( 1993; ). Poliovirus protein 2C has ATPase and GTPase activities. . J Biol Chem 268:, 8105–8110.[PubMed]
    [Google Scholar]
  26. Rodríguez P. L., Carrasco L.. ( 1995; ). Poliovirus protein 2C contains two regions involved in RNA binding activity. . J Biol Chem 270:, 10105–10112. [CrossRef] [PubMed]
    [Google Scholar]
  27. Schwartz M. D., Fiore D., Panganiban A. T.. ( 1997; ). Distinct functions and requirements for the Cys-His boxes of the human immunodeficiency virus type 1 nucleocapsid protein during RNA encapsidation and replication. . J Virol 71:, 9295–9305.[PubMed]
    [Google Scholar]
  28. Teterina N. L., Kean K. M., Gorbalenya A. E., Agol V. I., Girard M.. ( 1992; ). Analysis of the functional significance of amino acid residues in the putative NTP-binding pattern of the poliovirus 2C protein. . J Gen Virol 73:, 1977–1986. [CrossRef] [PubMed]
    [Google Scholar]
  29. Teterina N. L., Gorbalenya A. E., Egger D., Bienz K., Ehrenfeld E.. ( 1997; ). Poliovirus 2C protein determinants of membrane binding and rearrangements in mammalian cells. . J Virol 71:, 8962–8972.[PubMed]
    [Google Scholar]
  30. van der Werf S., Bradley J., Wimmer E., Studier F. W., Dunn J. J.. ( 1986; ). Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase. . Proc Natl Acad Sci U S A 83:, 2330–2334. [CrossRef] [PubMed]
    [Google Scholar]
  31. Vance L. M., Moscufo N., Chow M., Heinz B. A.. ( 1997; ). Poliovirus 2C region functions during encapsidation of viral RNA. . J Virol 71:, 8759–8765.[PubMed]
    [Google Scholar]
  32. Verlinden Y., Cuconati A., Wimmer E., Rombaut B.. ( 2000; ). Cell-free synthesis of poliovirus: 14S subunits are the key intermediates in the encapsidation of poliovirus RNA. . J Gen Virol 81:, 2751–2754.[PubMed]
    [Google Scholar]
  33. Wang C., Jiang P., Sand C., Paul A. V., Wimmer E.. ( 2012; ). Alanine scanning of poliovirus 2CATPase reveals new genetic evidence that capsid protein/2CATPase interactions are essential for morphogenesis. . J Virol 86:, 9964–9975. [CrossRef] [PubMed]
    [Google Scholar]
  34. Wimmer E., Hellen C. U., Cao X.. ( 1993; ). Genetics of poliovirus. . Annu Rev Genet 27:, 353–436. [CrossRef] [PubMed]
    [Google Scholar]
  35. Yin J., Liu Y., Wimmer E., Paul A. V.. ( 2007; ). Complete protein linkage map between the P2 and P3 non-structural proteins of poliovirus. . J Gen Virol 88:, 2259–2267. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.062497-0
Loading
/content/journal/jgv/10.1099/vir.0.062497-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error