1887

Abstract

The recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV), a betacoronavirus, is associated with severe pneumonia and renal failure. The environmental origin of MERS-CoV is as yet unknown; however, its genome sequence is closely related to those of two bat coronaviruses, named BtCoV-HKU4 and BtCoV-HKU5, which were derived from Chinese bat samples. A hallmark of highly pathogenic respiratory viruses is their ability to evade the innate immune response of the host. CoV accessory proteins, for example those from severe acute respiratory syndrome CoV (SARS-CoV), have been shown to block innate antiviral signalling pathways. MERS-CoV, similar to SARS-CoV, has been shown to inhibit type I IFN induction in a variety of cell types . We therefore hypothesized that MERS-CoV and the phylogenetically related BtCoV-HKU4 and BtCoV-HKU5 may encode proteins with similar capabilities. In this study, we have demonstrated that the ORF4b-encoded accessory protein (p4b) of MERS-CoV, BtCoV-HKU4 and BtCoV-HKU5 may indeed facilitate innate immune evasion by inhibiting the type I IFN and NF-κB signalling pathways. We also analysed the subcellular localization of p4b from MERS-CoV, BtCoV-HKU4 and BtCoV-HKU5 and demonstrated that all are localized to the nucleus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.062059-0
2014-04-01
2020-05-31
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/4/874.html?itemId=/content/journal/jgv/10.1099/vir.0.062059-0&mimeType=html&fmt=ahah

References

  1. Alejo A., Ruiz-Argüello M. B., Ho Y., Smith V. P., Saraiva M., Alcamí A. 2006; A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus. Proc Natl Acad Sci USA 1035995–6000 [CrossRef]
    [Google Scholar]
  2. Barretto N., Jukneliene D., Ratia K., Chen Z., Mesecar A. D., Baker S. C. 2005; The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J Virol 7915189–15198 [CrossRef]
    [Google Scholar]
  3. Barretto N., Jukneliene D., Ratia K., Chen Z., Mesecar A. D., Baker S. C. 2006; Deubiquitinating activity of the SARS-CoV papain-like protease. Adv Exp Med Biol 58237–41
    [Google Scholar]
  4. Brunetti C. R., Paulose-Murphy M., Singh R., Qin J., Barrett J. W., Tardivel A., Schneider P., Essani K., McFadden G. 2003; A secreted high-affinity inhibitor of human TNF from Tanapox virus. Proc Natl Acad Sci USA 1004831–4836 [CrossRef]
    [Google Scholar]
  5. Corman V. M., Eckerle I., Bleicker T., Zaki A., Landt O., Eschbach-Bludau M., van Boheemen S., Gopal R., Ballhause M. other authors 2012; Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro Surveill 17:20285[PubMed]
    [Google Scholar]
  6. Corman V. M., Kallies R., Philipps H., Gopner G., Muller M. A., Eckerle I., Brunink S., Drosten C., Drexler J. F. 2014; Characterization of a novel betacoronavirus related to MERS-CoV in European hedgehogs. J Virol 88:717–724 [CrossRef][PubMed]
    [Google Scholar]
  7. de Wilde A. H., Raj V. S., Oudshoorn D., Bestebroer T. M., van Nieuwkoop S., Limpens R. W., Posthuma C. C., van der Meer Y., Bárcena M. other authors 2013; MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment. J Gen Virol 94:1749–1760 [CrossRef][PubMed]
    [Google Scholar]
  8. Devaraj S. G., Wang N., Chen Z., Chen Z., Tseng M., Barretto N., Lin R., Peters C. J., Tseng C. T. other authors 2007; Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J Biol Chem 28232208–32221 [CrossRef]
    [Google Scholar]
  9. Frieman M., Yount B., Heise M., Kopecky-Bromberg S. A., Palese P., Baric R. S. 2007; Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J Virol 81:9812–9824 [CrossRef][PubMed]
    [Google Scholar]
  10. Frieman M., Heise M., Baric R. 2008; SARS coronavirus and innate immunity. Virus Res 133:101–112 [CrossRef][PubMed]
    [Google Scholar]
  11. Frieman M., Ratia K., Johnston R. E., Mesecar A. D., Baric R. S. 2009; Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-κB signaling. J Virol 83:6689–6705 [CrossRef][PubMed]
    [Google Scholar]
  12. Haagmans B. L., Al Dhahiry S. H., Reusken C. B., Raj V. S., Galiano M., Myers R., Godeke G. J., Jonges M., Farag E. other authors 2013; Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infect Dis [Epub ahead of print] [CrossRef][PubMed]
    [Google Scholar]
  13. Haller O., Kochs G., Weber F. 2007; Interferon, Mx, and viral countermeasures. Cytokine Growth Factor Rev 18425–433 [CrossRef]
    [Google Scholar]
  14. Hatada E., Saito S., Fukuda R. 1999; Mutant influenza viruses with a defective NS1 protein cannot block the activation of PKR in infected cells. J Virol 732425–2433
    [Google Scholar]
  15. Kamitani W., Narayanan K., Huang C., Lokugamage K., Ikegami T., Ito N., Kubo H., Makino S. 2006; Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. Proc Natl Acad Sci USA 10312885–12890 [CrossRef]
    [Google Scholar]
  16. Kindler E., Jónsdóttir H. R., Muth D., Hamming O. J., Hartmann R., Rodriguez R., Geffers R., Fouchier R. A., Drosten C. other authors 2013; Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential. MBio 4:e00611–e00612 [CrossRef][PubMed]
    [Google Scholar]
  17. Kopecky-Bromberg S. A., Martínez-Sobrido L., Frieman M., Baric R. A., Palese P. 2007; Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 81:548–557 [CrossRef][PubMed]
    [Google Scholar]
  18. Lau S. K., Woo P. C., Li K. S., Huang Y., Tsoi H. W., Wong B. H., Wong S. S., Leung S. Y., Chan K. H., Yuen K. Y. 2005; Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 102:14040–14045 [CrossRef][PubMed]
    [Google Scholar]
  19. Memish Z. A., Mishra N., Olival K. J., Fagbo S. F., Kapoor V., Epstein J. H., Alhakeem R., Durosinloun A., Al Asmari M. other authors 2013; Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg Infect Dis 19:1819–1823 [CrossRef][PubMed]
    [Google Scholar]
  20. Niemeyer D., Zillinger T., Muth D., Zielecki F., Horvath G., Suliman T., Barchet W., Weber F., Drosten C., Müller M. A. 2013; Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist. J Virol 87:12489–12495 [CrossRef][PubMed]
    [Google Scholar]
  21. Sun L., Xing Y., Chen X., Zheng Y., Yang Y., Nichols D. B., Clementz M. A., Banach B. S., Li K. other authors 2012; Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. PLoS ONE 7:e30802 [CrossRef][PubMed]
    [Google Scholar]
  22. van Boheemen S., de Graaf M., Lauber C., Bestebroer T. M., Raj V. S., Zaki A. M., Osterhaus A. D., Haagmans B. L., Gorbalenya A. E. other authors 2012; Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio 3:e00473-12 [CrossRef][PubMed]
    [Google Scholar]
  23. Waibler Z., Anzaghe M., Frenz T., Schwantes A., Pöhlmann C., Ludwig H., Palomo-Otero M., Alcamí A., Sutter G. other authors 2009; Vaccinia virus-mediated inhibition of type I interferon responses is a multifactorial process involving the soluble type I interferon receptor B18 and intracellular components. J Virol 831563–1571 [CrossRef]
    [Google Scholar]
  24. Wang F., Ma Y., Barrett J. W., Gao X., Loh J., Barton E., Virgin H. W., McFadden G. 2004; Disruption of Erk-dependent type I interferon induction breaks the myxoma virus species barrier. Nat Immunol 51266–1274 [CrossRef]
    [Google Scholar]
  25. Wang G., Chen G., Zheng D., Cheng G., Tang H. 2011; PLP2 of mouse hepatitis virus A59 (MHV-A59) targets TBK1 to negatively regulate cellular type I interferon signaling pathway. PLoS ONE 6e17192 [CrossRef]
    [Google Scholar]
  26. Wathelet M. G., Orr M., Frieman M. B., Baric R. S. 2007; Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain. J Virol 81:11620–11633 [CrossRef][PubMed]
    [Google Scholar]
  27. Woo P. C., Lau S. K., Li K. S., Poon R. W., Wong B. H., Tsoi H. W., Yip B. C., Huang Y., Chan K. H., Yuen K. Y. 2006; Molecular diversity of coronaviruses in bats. Virology 351:180–187 [CrossRef][PubMed]
    [Google Scholar]
  28. Woo P. C. Y., Wang M., Lau S. K. P., Xu H., Poon R. W. S., Guo R., Wong B. H. L., Gao K., Tsoi H. w. other authors 2007; Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features. J Virol 81:1574–1585 [CrossRef]
    [Google Scholar]
  29. Xu R.-H., Rubio D., Roscoe F., Krouse T. E., Truckenmiller M. E., Norbury C. C., Hudson P. N., Damon I. K., Alcamí A. other authors 2012; Antibody inhibition of a viral type 1 interferon decoy receptor cures a viral disease by restoring interferon signaling in the liver. PLoS Pathog 8:e1002475 [CrossRef]
    [Google Scholar]
  30. Zaki A. M., van Boheemen S., Bestebroer T. M., Osterhaus A. D., Fouchier R. A. 2012; Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367:1814–1820 [CrossRef][PubMed]
    [Google Scholar]
  31. Zhao J., Falcón A., Zhou H., Netland J., Enjuanes L., Pérez Breña P., Perlman S. 2009; Severe acute respiratory syndrome coronavirus protein 6 is required for optimal replication. J Virol 83:2368–2373 [CrossRef][PubMed]
    [Google Scholar]
  32. Zhao L., Rose K. M., Elliott R., van Rooijen N., Weiss S. R. 2011; Cell-type-specific type I interferon antagonism influences organ tropism of murine coronavirus. J Virol 85:10058–10068 [CrossRef]
    [Google Scholar]
  33. Zielecki F., Weber M., Eickmann M., Spiegelberg L., Zaki A. M., Matrosovich M., Becker S., Weber F. 2013; Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to SARS-coronavirus. J Virol 87:5300–5304 [CrossRef]
    [Google Scholar]
  34. Züst R., Cervantes-Barragan L., Habjan M., Maier R., Neuman B. W., Ziebuhr J., Szretter K. J., Baker S. C., Barchet W. other authors 2011; Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 12:137–143 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.062059-0
Loading
/content/journal/jgv/10.1099/vir.0.062059-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error