1887

Abstract

is considered an important nosocomial pathogen, being very tolerant to the host immune system and antibiotherapy, particularly when in biofilms. Due to its high resistance, alternative antimicrobial strategies are under development. The use of bacteriophages is seen as an important strategy to combat pathogenic organisms. In this study, a myovirus, SEP1, was isolated and characterized. The genome of this phage was sequenced and shown to be related peripherally to the genus . However, when compared with other phages of this genus, it showed DNA sequence identities no greater than 58.2 %. As opposed to other polyvalent viruses of the genus , SEP1 is highly specific to strains. The good infectivity shown by this phage as well as its high lytic spectrum suggested that it might be a good candidate for therapeutic studies.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.060590-0
2014-02-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/2/506.html?itemId=/content/journal/jgv/10.1099/vir.0.060590-0&mimeType=html&fmt=ahah

References

  1. Ackermann H. W. . ( 2009; ). Basic phage electron microscopy. . Methods Mol Biol 501:, 113–126. [CrossRef] [PubMed]
    [Google Scholar]
  2. Ackermann H. W. , Kropinski A. M. . ( 2007; ). Curated list of prokaryote viruses with fully sequenced genomes. . Res Microbiol 158:, 555–566. [CrossRef] [PubMed]
    [Google Scholar]
  3. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410.[PubMed] [CrossRef]
    [Google Scholar]
  4. Altschul S. F. , Madden T. L. , Schäffer A. A. , Zhang J. , Zhang Z. , Miller W. , Lipman D. J. . ( 1997; ). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef] [PubMed]
    [Google Scholar]
  5. Aswani V. H. , Shukla S. K. . ( 2011; ). Prevalence of Staphylococcus aureus and lack of its lytic bacteriophages in the anterior nares of patients and healthcare workers at a rural clinic. . Clin Med Res 9:, 75–81. [CrossRef] [PubMed]
    [Google Scholar]
  6. Aziz R. K. , Bartels D. , Best A. A. , DeJongh M. , Disz T. , Edwards R. A. , Formsma K. , Gerdes S. , Glass E. M. . & other authors ( 2008; ). The RAST Server: rapid annotations using subsystems technology. . BMC Genomics 9:, 75. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bae T. , Baba T. , Hiramatsu K. , Schneewind O. . ( 2006; ). Prophages of Staphylococcus aureus Newman and their contribution to virulence. . Mol Microbiol 62:, 1035–1047. [CrossRef] [PubMed]
    [Google Scholar]
  8. Bailey T. L. , Boden M. , Buske F. A. , Frith M. , Grant C. E. , Clementi L. , Ren J. , Li W. W. , Noble W. S. . ( 2009; ). MEME SUITE: tools for motif discovery and searching. . Nucleic Acids Res 37: (Web Server issue), W202–– W208. [CrossRef] [PubMed]
    [Google Scholar]
  9. Barabas O. , Ronning D. R. , Guynet C. , Hickman A. B. , Ton-Hoang B. , Chandler M. , Dyda F. . ( 2008; ). Mechanism of IS200/IS605 family DNA transposases: activation and transposon-directed target site selection. . Cell 132:, 208–220. [CrossRef] [PubMed]
    [Google Scholar]
  10. Casjens S. R. , Gilcrease E. B. . ( 2009; ). Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. . Methods Mol Biol 502:, 91–111. [CrossRef] [PubMed]
    [Google Scholar]
  11. Cerca N. , Martins S. , Cerca F. , Jefferson K. K. , Pier G. B. , Oliveira R. , Azeredo J. . ( 2005; ). Comparative assessment of antibiotic susceptibility of coagulase-negative staphylococci in biofilm versus planktonic culture as assessed by bacterial enumeration or rapid XTT colorimetry. . J Antimicrob Chemother 56:, 331–336. [CrossRef] [PubMed]
    [Google Scholar]
  12. Cerca N. , Jefferson K. K. , Oliveira R. , Pier G. B. , Azeredo J. . ( 2006; ). Comparative antibody-mediated phagocytosis of Staphylococcus epidermidis cells grown in a biofilm or in the planktonic state. . Infect Immun 74:, 4849–4855. [CrossRef] [PubMed]
    [Google Scholar]
  13. Cerca N. , Oliveira R. , Azeredo J. . ( 2007; ). Susceptibility of Staphylococcus epidermidis planktonic cells and biofilms to the lytic action of staphylococcus bacteriophage K. . Lett Appl Microbiol 45:, 313–317. [CrossRef] [PubMed]
    [Google Scholar]
  14. Cerca N. , Gomes F. , Bento J. C. , França A. , Rolo J. , Miragaia M. , Teixeira P. , Oliveira R. . ( 2013; ). Farnesol induces cell detachment from established S. epidermidis biofilms. . J Antibiot (Tokyo) 66:, 255–258. [CrossRef] [PubMed]
    [Google Scholar]
  15. Cui Z. , Song Z. , Wang Y. , Zeng L. , Shen W. , Wang Z. , Li Q. , He P. , Qin J. , Guo X. . ( 2012; ). Complete genome sequence of wide-host-range Staphylococcus aureus phage JD007. . J Virol 86:, 13880–13881. [CrossRef] [PubMed]
    [Google Scholar]
  16. Daly C. , Fitzgerald G. F. , Davis R. . ( 1996; ). Biotechnology of lactic acid bacteria with special reference to bacteriophage resistance. . Antonie van Leeuwenhoek 70:, 99–110. [CrossRef] [PubMed]
    [Google Scholar]
  17. Daniel A. , Bonnen P. E. , Fischetti V. A. . ( 2007; ). First complete genome sequence of two Staphylococcus epidermidis bacteriophages. . J Bacteriol 189:, 2086–2100. [CrossRef] [PubMed]
    [Google Scholar]
  18. Darling A. E. , Mau B. , Perna N. T. . ( 2010; ). progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. . PLoS ONE 5:, e11147. [CrossRef] [PubMed]
    [Google Scholar]
  19. Eyer L. , Pantůcek R. , Zdráhal Z. , Konecná H. , Kaspárek P. , Růzicková V. , Hernychová L. , Preisler J. , Doskar J. . ( 2007; ). Structural protein analysis of the polyvalent staphylococcal bacteriophage 812. . Proteomics 7:, 64–72. [CrossRef] [PubMed]
    [Google Scholar]
  20. Feng Y. , Chen C. J. , Su L. H. , Hu S. , Yu J. , Chiu C. H. . ( 2008; ). Evolution and pathogenesis of Staphylococcus aureus: lessons learned from genotyping and comparative genomics. . FEMS Microbiol Rev 32:, 23–37. [CrossRef] [PubMed]
    [Google Scholar]
  21. Gill J. J. , Hyman P. . ( 2010; ). Phage choice, isolation, and preparation for phage therapy. . Curr Pharm Biotechnol 11:, 2–14. [CrossRef] [PubMed]
    [Google Scholar]
  22. Gu J. , Liu X. , Lu R. , Li Y. , Song J. , Lei L. , Sun C. , Feng X. , Du C. . & other authors ( 2012; ). Complete genome sequence of Staphylococcus aureus bacteriophage GH15. . J Virol 86:, 8914–8915. [CrossRef] [PubMed]
    [Google Scholar]
  23. Gupta R. , Prasad Y. . ( 2011; ). Efficacy of polyvalent bacteriophage P-27/HP to control multidrug resistant Staphylococcus aureus associated with human infections. . Curr Microbiol 62:, 255–260. [CrossRef] [PubMed]
    [Google Scholar]
  24. Gustafsson I. , Cars O. , Andersson D. I. . ( 2003; ). Fitness of antibiotic resistant Staphylococcus epidermidis assessed by competition on the skin of human volunteers. . J Antimicrob Chemother 52:, 258–263. [CrossRef] [PubMed]
    [Google Scholar]
  25. Gutiérrez D. , Martínez B. , Rodríguez A. , García P. . ( 2010; ). Isolation and characterization of bacteriophages infecting Staphylococcus epidermidis . . Curr Microbiol 61:, 601–608. [CrossRef] [PubMed]
    [Google Scholar]
  26. Gutiérrez D. , Martínez B. , Rodríguez A. , García P. . ( 2012; ). Genomic characterization of two Staphylococcus epidermidis bacteriophages with anti-biofilm potential. . BMC Genomics 13:, 228. [CrossRef] [PubMed]
    [Google Scholar]
  27. Hoshiba H. , Uchiyama J. , Kato S. , Ujihara T. , Muraoka A. , Daibata M. , Wakiguchi H. , Matsuzaki S. . ( 2010; ). Isolation and characterization of a novel Staphylococcus aureus bacteriophage, phiMR25, and its therapeutic potential. . Arch Virol 155:, 545–552. [CrossRef] [PubMed]
    [Google Scholar]
  28. Iandolo J. J. , Worrell V. , Groicher K. H. , Qian Y. , Tian R. , Kenton S. , Dorman A. , Ji H. , Lin S. . & other authors ( 2002; ). Comparative analysis of the genomes of the temperate bacteriophages phi 11, phi 12 and phi 13 of Staphylococcus aureus 8325. . Gene 289:, 109–118. [CrossRef] [PubMed]
    [Google Scholar]
  29. Jabbouri S. , Sadovskaya I. . ( 2010; ). Characteristics of the biofilm matrix and its role as a possible target for the detection and eradication of Staphylococcus epidermidis associated with medical implant infections. . FEMS Immunol Med Microbiol 59:, 280–291.[PubMed]
    [Google Scholar]
  30. Käll L. , Sonnhammer E. L. . ( 2002; ). Reliability of transmembrane predictions in whole-genome data. . FEBS Lett 532:, 415–418. [CrossRef] [PubMed]
    [Google Scholar]
  31. Käll L. , Krogh A. , Sonnhammer E. L. . ( 2004; ). A combined transmembrane topology and signal peptide prediction method. . J Mol Biol 338:, 1027–1036. [CrossRef] [PubMed]
    [Google Scholar]
  32. Kaneko J. , Kimura T. , Narita S. , Tomita T. , Kamio Y. . ( 1998; ). Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage phiPVL carrying Panton-Valentine leukocidin genes. . Gene 215:, 57–67. [CrossRef] [PubMed]
    [Google Scholar]
  33. Kelly D. , McAuliffe O. , Ross R. P. , Coffey A. . ( 2012; ). Prevention of Staphylococcus aureus biofilm formation and reduction in established biofilm density using a combination of phage K and modified derivatives. . Lett Appl Microbiol 54:, 286–291. [CrossRef] [PubMed]
    [Google Scholar]
  34. Klumpp J. , Dorscht J. , Lurz R. , Bielmann R. , Wieland M. , Zimmer M. , Calendar R. , Loessner M. J. . ( 2008; ). The terminally redundant, nonpermuted genome of Listeria bacteriophage A511: a model for the SPO1-like myoviruses of Gram-positive bacteria. . J Bacteriol 190:, 5753–5765. [CrossRef] [PubMed]
    [Google Scholar]
  35. Klumpp J. , Lavigne R. , Loessner M. J. , Ackermann H. W. . ( 2010; ). The SPO1-related bacteriophages. . Arch Virol 155:, 1547–1561. [CrossRef] [PubMed]
    [Google Scholar]
  36. Kropinski A. M. , Sulakvelidze A. , Konczy P. , Poppe C. . ( 2007; ). Salmonella phages and prophages – genomics and practical aspects. . Methods Mol Biol 394:, 133–175. [CrossRef] [PubMed]
    [Google Scholar]
  37. Kutateladze M. , Adamia R. . ( 2010; ). Bacteriophages as potential new therapeutics to replace or supplement antibiotics. . Trends Biotechnol 28:, 591–595. [CrossRef] [PubMed]
    [Google Scholar]
  38. Kvachadze L. , Balarjishvili N. , Meskhi T. , Tevdoradze E. , Skhirtladze N. , Pataridze T. , Adamia R. , Topuria T. , Kutter E. . & other authors ( 2011; ). Evaluation of lytic activity of staphylococcal bacteriophage Sb-1 against freshly isolated clinical pathogens. . Microb Biotechnol 4:, 643–650. [CrossRef] [PubMed]
    [Google Scholar]
  39. Kwan T. , Liu J. , DuBow M. , Gros P. , Pelletier J. . ( 2005; ). The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. . Proc Natl Acad Sci U S A 102:, 5174–5179. [CrossRef] [PubMed]
    [Google Scholar]
  40. Laemmli U. K. . ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. . Nature 227:, 680–685. [CrossRef] [PubMed]
    [Google Scholar]
  41. Laslett D. , Canback B. . ( 2004; ). ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. . Nucleic Acids Res 32:, 11–16. [CrossRef] [PubMed]
    [Google Scholar]
  42. Lavigne R. , Seto D. , Mahadevan P. , Ackermann H. W. , Kropinski A. M. . ( 2008; ). Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. . Res Microbiol 159:, 406–414. [CrossRef] [PubMed]
    [Google Scholar]
  43. Lavigne R. , Darius P. , Summer E. J. , Seto D. , Mahadevan P. , Nilsson A. S. , Ackermann H. W. , Kropinski A. M. . ( 2009; ). Classification of Myoviridae bacteriophages using protein sequence similarity. . BMC Microbiol 9:, 224. [CrossRef] [PubMed]
    [Google Scholar]
  44. Lindqvist R. . ( 2006; ). Estimation of Staphylococcus aureus growth parameters from turbidity data: characterization of strain variation and comparison of methods. . Appl Environ Microbiol 72:, 4862–4870. [CrossRef] [PubMed]
    [Google Scholar]
  45. Łobocka M. B. , Rose D. J. , Plunkett G. III , Rusin M. , Samojedny A. , Lehnherr H. , Yarmolinsky M. B. , Blattner F. R. . ( 2004; ). Genome of bacteriophage P1. . J Bacteriol 186:, 7032–7068. [CrossRef] [PubMed]
    [Google Scholar]
  46. Łobocka M. , Hejnowicz M. S. , Dąbrowski K. , Gozdek A. , Kosakowski J. , Witkowska M. , Ulatowska M. I. , Weber-Dąbrowska B. , Kwiatek M. . & other authors ( 2012; ). Genomics of staphylococcal Twort-like phages – potential therapeutics of the post-antibiotic era. . Adv Virus Res 83:, 143–216. [CrossRef] [PubMed]
    [Google Scholar]
  47. Loc-Carrillo C. , Abedon S. T. . ( 2011; ). Pros and cons of phage therapy. . Bacteriophage 1:, 111–114. [CrossRef] [PubMed]
    [Google Scholar]
  48. Madhusoodanan J. , Seo K. S. , Remortel B. , Park J. Y. , Hwang S. Y. , Fox L. K. , Park Y. H. , Deobald C. F. , Wang D. . & other authors ( 2011; ). An enterotoxin-bearing pathogenicity island in Staphylococcus epidermidis . . J Bacteriol 193:, 1854–1862. [CrossRef] [PubMed]
    [Google Scholar]
  49. Mahadevan P. , King J. F. , Seto D. . ( 2009; ). Data mining pathogen genomes using GeneOrder and CoreGenes and CGUG: gene order, synteny and in silico proteomes. . Int J Comput Biol Drug Des 2:, 100–114. [CrossRef] [PubMed]
    [Google Scholar]
  50. Marchler-Bauer A. , Lu S. , Anderson J. B. , Chitsaz F. , Derbyshire M. K. , DeWeese-Scott C. , Fong J. H. , Geer L. Y. , Geer R. C. . & other authors ( 2011; ). CDD: a conserved domain database for the functional annotation of proteins. . Nucleic Acids Res 39: (Database issue), D225–D229. [CrossRef] [PubMed]
    [Google Scholar]
  51. Myers E. W. , Miller W. . ( 1988; ). Optimal alignments in linear space. . Comput Appl Biosci 4:, 11–17.[PubMed]
    [Google Scholar]
  52. Naville M. , Ghuillot-Gaudeffroy A. , Marchais A. , Gautheret D. . ( 2011; ). ARNold: a web tool for the prediction of Rho-independent transcription terminators. . RNA Biol 8:, 11–13. [CrossRef] [PubMed]
    [Google Scholar]
  53. NNIS System ( 2004; ). National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. . Am J Infect Control 32:, 470–485. [CrossRef] [PubMed]
    [Google Scholar]
  54. O’Flaherty S. , Coffey A. , Edwards R. , Meaney W. , Fitzgerald G. F. , Ross R. P. . ( 2004; ). Genome of staphylococcal phage K: a new lineage of Myoviridae infecting Gram-positive bacteria with a low G+C content. . J Bacteriol 186:, 2862–2871. [CrossRef] [PubMed]
    [Google Scholar]
  55. O’Flaherty S. , Ross R. P. , Meaney W. , Fitzgerald G. F. , Elbreki M. F. , Coffey A. . ( 2005; ). Potential of the polyvalent anti-Staphylococcus bacteriophage K for control of antibiotic-resistant staphylococci from hospitals. . Appl Environ Microbiol 71:, 1836–1842. [CrossRef] [PubMed]
    [Google Scholar]
  56. Otto M. . ( 2009; ). Staphylococcus epidermidis – the ‘accidental’ pathogen. . Nat Rev Microbiol 7:, 555–567. [CrossRef] [PubMed]
    [Google Scholar]
  57. Otto M. . ( 2010; ). Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus . . Annu Rev Microbiol 64:, 143–162. [CrossRef] [PubMed]
    [Google Scholar]
  58. Pantůček R. , Rosypalová A. , Doškar J. , Kailerová J. , Růžičková V. , Borecká P. , Snopková S. , Horváth R. , Götz F. , Rosypal S. . ( 1998; ). The polyvalent staphylococcal phage phi 812: its host-range mutants and related phages. . Virology 246:, 241–252. [CrossRef] [PubMed]
    [Google Scholar]
  59. Pires D. , Sillankorva S. , Faustino A. , Azeredo J. . ( 2011; ). Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms. . Res Microbiol 162:, 798–806. [CrossRef] [PubMed]
    [Google Scholar]
  60. Rees P. J. , Fry B. A. . ( 1981; ). The morphology of staphylococcal bacteriophage K and DNA metabolism in infected Staphylococcus aureus . . J Gen Virol 53:, 293–307. [CrossRef] [PubMed]
    [Google Scholar]
  61. Rice P. , Longden I. , Bleasby A. . ( 2000; ). EMBOSS: the European Molecular Biology Open Software Suite. . Trends Genet 16:, 276–277. [CrossRef] [PubMed]
    [Google Scholar]
  62. Rohwer F. , Edwards R. . ( 2002; ). The Phage Proteomic Tree: a genome-based taxonomy for phage. . J Bacteriol 184:, 4529–4535. [CrossRef] [PubMed]
    [Google Scholar]
  63. Schattner P. , Brooks A. N. , Lowe T. M. . ( 2005; ). The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. . Nucleic Acids Res 33: (Web Server issue), W686–W689. [CrossRef] [PubMed]
    [Google Scholar]
  64. Sillankorva S. , Neubauer P. , Azeredo J. . ( 2008; ). Isolation and characterization of a T7-like lytic phage for Pseudomonas fluorescens . . BMC Biotechnol 8:, 80. [CrossRef] [PubMed]
    [Google Scholar]
  65. Sillankorva S. , Neubauer P. , Azeredo J. . ( 2010; ). Phage control of dual species biofilms of Pseudomonas fluorescens and Staphylococcus lentus . . Biofouling 26:, 567–575. [CrossRef] [PubMed]
    [Google Scholar]
  66. Son J. S. , Lee S. J. , Jun S. Y. , Yoon S. J. , Kang S. H. , Paik H. R. , Kang J. O. , Choi Y. J. . ( 2010; ). Antibacterial and biofilm removal activity of a Podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cell-wall-degrading enzyme. . Appl Microbiol Biotechnol 86:, 1439–1449. [CrossRef] [PubMed]
    [Google Scholar]
  67. Stothard P. , Wishart D. S. . ( 2005; ). Circular genome visualization and exploration using CGView. . Bioinformatics 21:, 537–539. [CrossRef] [PubMed]
    [Google Scholar]
  68. Sulakvelidze A. , Alavidze Z. , Morris J. G. Jr . ( 2001; ). Bacteriophage therapy. . Antimicrob Agents Chemother 45:, 649–659. [CrossRef] [PubMed]
    [Google Scholar]
  69. Van Twest R. , Kropinski A. M. . ( 2009; ). Bacteriophage enrichment from water and soil. . Methods Mol Biol 501:, 15–21. [CrossRef] [PubMed]
    [Google Scholar]
  70. Vandersteegen K. , Mattheus W. , Ceyssens P. J. , Bilocq F. , De Vos D. , Pirnay J. P. , Noben J. P. , Merabishvili M. , Lipinska U. . & other authors ( 2011; ). Microbiological and molecular assessment of bacteriophage ISP for the control of Staphylococcus aureus . . PLoS ONE 6:, e24418. [CrossRef] [PubMed]
    [Google Scholar]
  71. Vandersteegen K. , Kropinski A. M. , Nash J. H. , Noben J. P. , Hermans K. , Lavigne R. . ( 2013; ). Romulus and Remus, two phage isolates representing a distinct clade within the Twortlikevirus genus, display suitable properties for phage therapy applications. . J Virol 87:, 3237–3247. [CrossRef] [PubMed]
    [Google Scholar]
  72. Vuong C. , Otto M. . ( 2002; ). Staphylococcus epidermidis infections. . Microbes Infect 4:, 481–489. [CrossRef] [PubMed]
    [Google Scholar]
  73. Zuker M. . ( 2003; ). Mfold web server for nucleic acid folding and hybridization prediction. . Nucleic Acids Res 31:, 3406–3415. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.060590-0
Loading
/content/journal/jgv/10.1099/vir.0.060590-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error