1887

Abstract

A method for rapid production of single-round infectious particles (SRIPs) of flavivirus would be useful for viral mutagenesis studies. Here, we established a DNA-based production system for SRIPs of flavivirus. We constructed a Japanese encephalitis virus (JEV) subgenomic replicon plasmid, which lacked the C-prM-E (capsid–pre-membrane–envelope) coding region, under the control of the cytomegalovirus promoter. When the JEV replicon plasmid was transiently co-transfected with a JEV C-prM-E expression plasmid into 293T cells, SRIPs were produced, indicating successful -complementation with JEV structural proteins. Equivalent production levels were observed when C and prM–E proteins were provided separately. Furthermore, dengue types 1–4, West Nile, yellow fever or tick-borne encephalitis virus prM-E proteins could be utilized for production of chimaeric flavivirus SRIPs, although the production was less efficient for dengue and yellow fever viruses. These results indicated that our plasmid-based system is suitable for investigating the life cycles of flaviviruses, diagnostic applications and development of safer vaccine candidates.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.058008-0
2014-01-01
2020-10-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/1/60.html?itemId=/content/journal/jgv/10.1099/vir.0.058008-0&mimeType=html&fmt=ahah

References

  1. Ansarah-Sobrinho C., Nelson S., Jost C. A., Whitehead S. S., Pierson T. C. 2008; Temperature-dependent production of pseudoinfectious dengue reporter virus particles by complementation. Virology 381:67–74 [CrossRef][PubMed]
    [Google Scholar]
  2. Campbell G. L., Hills S. L., Fischer M., Jacobson J. A., Hoke C. H., Hombach J. M., Marfin A. A., Solomon T., Tsai T. F.other authors 2011; Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ 89:766–774, 774A–774E [CrossRef][PubMed]
    [Google Scholar]
  3. Cao F., Li X. F., Yu X. D., Deng Y. Q., Jiang T., Zhu Q. Y., Qin E. D., Qin C. F. 2011; A DNA-based West Nile virus replicon elicits humoral and cellular immune responses in mice. J Virol Methods 178:87–93 [CrossRef][PubMed]
    [Google Scholar]
  4. Chang G. J., Hunt A. R., Holmes D. A., Springfield T., Chiueh T. S., Roehrig J. T., Gubler D. J. 2003; Enhancing biosynthesis and secretion of premembrane and envelope proteins by the chimeric plasmid of dengue virus type 2 and Japanese encephalitis virus. Virology 306:170–180 [CrossRef][PubMed]
    [Google Scholar]
  5. Chang D. C., Liu W. J., Anraku I., Clark D. C., Pollitt C. C., Suhrbier A., Hall R. A., Khromykh A. A. 2008; Single-round infectious particles enhance immunogenicity of a DNA vaccine against West Nile virus. Nat Biotechnol 26:571–577 [CrossRef][PubMed]
    [Google Scholar]
  6. Gehrke R., Ecker M., Aberle S. W., Allison S. L., Heinz F. X., Mandl C. W. 2003; Incorporation of tick-borne encephalitis virus replicons into virus-like particles by a packaging cell line. J Virol 77:8924–8933 [CrossRef][PubMed]
    [Google Scholar]
  7. Hahn C. S., Hahn Y. S., Rice C. M., Lee E., Dalgarno L., Strauss E. G., Strauss J. H. 1987; Conserved elements in the 3′ untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol 198:33–41 [CrossRef][PubMed]
    [Google Scholar]
  8. Hsieh S. C., Liu I. J., King C. C., Chang G. J., Wang W. K. 2008; A strong endoplasmic reticulum retention signal in the stem-anchor region of envelope glycoprotein of dengue virus type 2 affects the production of virus-like particles. Virology 374:338–350 [CrossRef][PubMed]
    [Google Scholar]
  9. Huang Y., Liu S., Yang P., Wang C., Du Y., Yu W., Sun Z. 2012; Replicon-based Japanese encephalitis virus vaccines elicit immune response in mice. J Virol Methods 179:217–225 [CrossRef][PubMed]
    [Google Scholar]
  10. Ishikawa T., Takasaki T., Kurane I., Nukuzuma S., Kondo T., Konishi E. 2007; Co-immunization with West Nile DNA and inactivated vaccines provides synergistic increases in their immunogenicities in mice. Microbes Infect 9:1089–1095 [CrossRef][PubMed]
    [Google Scholar]
  11. Jones C. T., Patkar C. G., Kuhn R. J. 2005; Construction and applications of yellow fever virus replicons. Virology 331:247–259 [CrossRef][PubMed]
    [Google Scholar]
  12. Khromykh A. A., Westaway E. G. 1997; Subgenomic replicons of the flavivirus Kunjin: construction and applications. J Virol 71:1497–1505[PubMed]
    [Google Scholar]
  13. Khromykh A. A., Varnavski A. N., Westaway E. G. 1998; Encapsidation of the flavivirus kunjin replicon RNA by using a complementation system providing Kunjin virus structural proteins in trans. J Virol 72:5967–5977[PubMed]
    [Google Scholar]
  14. Khromykh A. A., Meka H., Guyatt K. J., Westaway E. G. 2001; Essential role of cyclization sequences in flavivirus RNA replication. J Virol 75:6719–6728 [CrossRef][PubMed]
    [Google Scholar]
  15. Konishi E., Shoda M., Ajiro N., Kondo T. 2004; Development and evaluation of an enzyme-linked immunosorbent assay for quantifying antibodies to Japanese encephalitis virus nonstructural 1 protein to detect subclinical infections in vaccinated horses. J Clin Microbiol 42:5087–5093 [CrossRef][PubMed]
    [Google Scholar]
  16. Konishi E., Kosugi S., Imoto J. 2006; Dengue tetravalent DNA vaccine inducing neutralizing antibody and anamnestic responses to four serotypes in mice. Vaccine 24:2200–2207 [CrossRef][PubMed]
    [Google Scholar]
  17. McAda P. C., Mason P. W., Schmaljohn C. S., Dalrymple J. M., Mason T. L., Fournier M. J. 1987; Partial nucleotide sequence of the Japanese encephalitis virus genome. Virology 158:348–360 [CrossRef][PubMed]
    [Google Scholar]
  18. Ng C. Y., Gu F., Phong W. Y., Chen Y. L., Lim S. P., Davidson A., Vasudevan S. G. 2007; Construction and characterization of a stable subgenomic dengue virus type 2 replicon system for antiviral compound and siRNA testing. Antiviral Res 76:222–231 [CrossRef][PubMed]
    [Google Scholar]
  19. Pang X., Zhang M., Dayton A. I. 2001; Development of Dengue virus type 2 replicons capable of prolonged expression in host cells. BMC Microbiol 1:18 [CrossRef][PubMed]
    [Google Scholar]
  20. Scholle F., Girard Y. A., Zhao Q., Higgs S., Mason P. W. 2004; trans-Packaged West Nile virus-like particles: infectious properties in vitro and in infected mosquito vectors. J Virol 78:11605–11614 [CrossRef][PubMed]
    [Google Scholar]
  21. Shi P. Y., Tilgner M., Lo M. K. 2002; Construction and characterization of subgenomic replicons of New York strain of West Nile virus. Virology 296:219–233 [CrossRef][PubMed]
    [Google Scholar]
  22. Sumiyoshi H., Mori C., Fuke I., Morita K., Kuhara S., Kondou J., Kikuchi Y., Nagamatu H., Igarashi A. 1987; Complete nucleotide sequence of the Japanese encephalitis virus genome RNA. Virology 161:497–510 [CrossRef][PubMed]
    [Google Scholar]
  23. Suzuki R., Winkelmann E. R., Mason P. W. 2009; Construction and characterization of a single-cycle chimeric flavivirus vaccine candidate that protects mice against lethal challenge with dengue virus type 2. J Virol 83:1870–1880 [CrossRef][PubMed]
    [Google Scholar]
  24. Suzuki R., Matsuda M., Watashi K., Aizaki H., Matsuura Y., Wakita T., Suzuki T. 2013; Signal peptidase complex subunit 1 participates in the assembly of hepatitis C virus through an interaction with E2 and NS2. PLoS Pathog 9:e1003589 [CrossRef][PubMed]
    [Google Scholar]
  25. van der Schaar H. M., Rust M. J., Waarts B. L., van der Ende-Metselaar H., Kuhn R. J., Wilschut J., Zhuang X., Smit J. M. 2007; Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking. J Virol 81:12019–12028 [CrossRef][PubMed]
    [Google Scholar]
  26. Winkelmann E. R., Widman D. G., Suzuki R., Mason P. W. 2011; Analyses of mutations selected by passaging a chimeric flavivirus identify mutations that alter infectivity and reveal an interaction between the structural proteins and the nonstructural glycoprotein NS1. Virology 421:96–104 [CrossRef][PubMed]
    [Google Scholar]
  27. Yoshii K., Hayasaka D., Goto A., Obara M., Araki K., Yoshimatsu K., Arikawa J., Ivanov L., Mizutani T.other authors 2003; Enzyme-linked immunosorbent assay using recombinant antigens expressed in mammalian cells for serodiagnosis of tick-borne encephalitis. J Virol Methods 108:171–179 [CrossRef][PubMed]
    [Google Scholar]
  28. Yoshii K., Goto A., Kawakami K., Kariwa H., Takashima I. 2008; Construction and application of chimeric virus-like particles of tick-borne encephalitis virus and mosquito-borne Japanese encephalitis virus. J Gen Virol 89:200–211 [CrossRef][PubMed]
    [Google Scholar]
  29. Yun S. I., Song B. H., Koo Y., Jeon I., Byun S. J., Park J. H., Joo Y. S., Kim S. Y., Lee Y. M. 2009; Japanese encephalitis virus-based replicon RNAs/particles as an expression system for HIV-1 Pr55Gag that is capable of producing virus-like particles. Virus Res 144:298–305 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.058008-0
Loading
/content/journal/jgv/10.1099/vir.0.058008-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error