1887

Abstract

The four serotypes of dengue virus (DENV) represent one of the major mosquito-borne pathogens globally; so far no vaccine or specific antiviral is available. During virion maturation, the pr protein is cleaved from its precursor form the prM protein on the surface of immature DENV by host protease. Recent findings have demonstrated that the pr protein not only played critical roles in virion assembly and maturation, but was also involved in antibody-dependent enhancement of DENV infection. However, the B-cell epitopes on the pr protein of DENV have not been well characterized. In this study, a set of 11 partially overlapping peptides spanning the entire pr protein of DENV-2 were fused with glutathione -transferase and expressed in . ELISA screening with murine hyperimmune antiserum against immature DENV identified the P8 peptide (KQNEPEDIDCWCNST) in the pr protein as the major immunodominant epitope. Fine mapping by truncated protein assays confirmed the 8-e peptide KQNEPEDI was the smallest unit capable of antibody binding. Importantly, the 8-e epitope reacted with sera from dengue fever patients. Site-directed mutagenesis revealed the asparagine residue at position 59 was important for epitope recognition. The 8-e epitope coincided well with the B-cell epitopes predicted by Immune Epitope Database analysis, and 3D structural modelling mapped the 8-e peptide on the surface of prM-E heterodimers. Overall, our findings characterized a linearized B-cell epitope on the pr protein of DENV, which will help to understand the life cycle of DENV and pathogenesis of dengue infections in human.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.052084-0
2013-07-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/7/1510.html?itemId=/content/journal/jgv/10.1099/vir.0.052084-0&mimeType=html&fmt=ahah

References

  1. AnandaRao R. , Swaminathan S. , Khanna N. . ( 2005; ). The identification of immunodominant linear epitopes of dengue type 2 virus capsid and NS4a proteins using pin-bound peptides. . Virus Res 112:, 60–68. [CrossRef] [PubMed]
    [Google Scholar]
  2. Apt D. , Raviprakash K. , Brinkman A. , Semyonov A. , Yang S. , Skinner C. , Diehl L. , Lyons R. , Porter K. , Punnonen J. . ( 2006; ). Tetravalent neutralizing antibody response against four dengue serotypes by a single chimeric dengue envelope antigen. . Vaccine 24:, 335–344. [CrossRef] [PubMed]
    [Google Scholar]
  3. Balakrishnan T. , Bela-Ong D. B. , Toh Y. X. , Flamand M. , Devi S. , Koh M. B. , Hibberd M. L. , Ooi E. E. , Low J. G. . & other authors ( 2011; ). Dengue virus activates polyreactive, natural IgG B cells after primary and secondary infection. . PLoS ONE 6:, e29430. [CrossRef] [PubMed]
    [Google Scholar]
  4. Beltramello M. , Williams K. L. , Simmons C. P. , Macagno A. , Simonelli L. , Quyen N. T. , Sukupolvi-Petty S. , Navarro-Sanchez E. , Young P. R. . & other authors ( 2010; ). The human immune response to Dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. . Cell Host Microbe 8:, 271–283. [CrossRef] [PubMed]
    [Google Scholar]
  5. Brien J. D. , Austin S. K. , Sukupolvi-Petty S. , O’Brien K. M. , Johnson S. , Fremont D. H. , Diamond M. S. . ( 2010; ). Genotype-specific neutralization and protection by antibodies against dengue virus type 3. . J Virol 84:, 10630–10643. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cardosa M. J. , Wang S. M. , Sum M. S. , Tio P. H. . ( 2002; ). Antibodies against prM protein distinguish between previous infection with dengue and Japanese encephalitis viruses. . BMC Microbiol 2:, 9. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chan A. H. , Tan H. C. , Chow A. Y. , Lim A. P. , Lok S. M. , Moreland N. J. , Vasudevan S. G. , MacAry P. A. , Ooi E. E. , Hanson B. J. . ( 2012; ). A human PrM antibody that recognizes a novel cryptic epitope on dengue E glycoprotein. . PLoS ONE 7:, e33451. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chiou S. S. , Fan Y. C. , Crill W. D. , Chang R. Y. , Chang G. J. . ( 2012; ). Mutation analysis of the cross-reactive epitopes of Japanese encephalitis virus envelope glycoprotein. . J Gen Virol 93:, 1185–1192. [CrossRef] [PubMed]
    [Google Scholar]
  9. Colpitts T. M. , Rodenhuis-Zybert I. , Moesker B. , Wang P. , Fikrig E. , Smit J. M. . ( 2011; ). prM-antibody renders immature West Nile virus infectious in vivo . . J Gen Virol 92:, 2281–2285. [CrossRef] [PubMed]
    [Google Scholar]
  10. Crill W. D. , Hughes H. R. , Trainor N. B. , Davis B. S. , Whitney M. T. , Chang G. J. . ( 2012; ). Sculpting humoral immunity through dengue vaccination to enhance protective immunity. . Front Immunol 3:, 334. [CrossRef] [PubMed]
    [Google Scholar]
  11. Dejnirattisai W. , Jumnainsong A. , Onsirisakul N. , Fitton P. , Vasanawathana S. , Limpitikul W. , Puttikhunt C. , Edwards C. , Duangchinda T. . & other authors ( 2010; ). Cross-reacting antibodies enhance dengue virus infection in humans. . Science 328:, 745–748. [CrossRef] [PubMed]
    [Google Scholar]
  12. Deng Y. Q. , Dai J. X. , Ji G. H. , Jiang T. , Wang H. J. , Yang H. O. , Tan W. L. , Liu R. , Yu M. . & other authors ( 2011; ). A broadly flavivirus cross-neutralizing monoclonal antibody that recognizes a novel epitope within the fusion loop of E protein. . PLoS ONE 6:, e16059. [CrossRef] [PubMed]
    [Google Scholar]
  13. Farrar J. , Focks D. , Gubler D. , Barrera R. , Guzman M. G. , Simmons C. , Kalayanarooj S. , Lum L. , McCall P. J. . & other authors ( 2007; ). Towards a global dengue research agenda. . Trop Med Int Health 12:, 695–699. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gromowski G. D. , Barrett N. D. , Barrett A. D. . ( 2008; ). Characterization of dengue virus complex-specific neutralizing epitopes on envelope protein domain III of dengue 2 virus. . J Virol 82:, 8828–8837. [CrossRef] [PubMed]
    [Google Scholar]
  15. Gubler D. J. . ( 2002; ). Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. . Trends Microbiol 10:, 100–103. [CrossRef] [PubMed]
    [Google Scholar]
  16. Hall R. A. , Tan S. E. , Selisko B. , Slade R. , Hobson-Peters J. , Canard B. , Hughes M. , Leung J. Y. , Balmori-Melian E. . & other authors ( 2009; ). Monoclonal antibodies to the West Nile virus NS5 protein map to linear and conformational epitopes in the methyltransferase and polymerase domains. . J Gen Virol 90:, 2912–2922. [CrossRef] [PubMed]
    [Google Scholar]
  17. Hua R. H. , Chen N. S. , Qin C. F. , Deng Y. Q. , Ge J. Y. , Wang X. J. , Qiao Z. J. , Chen W. Y. , Wen Z. Y. . & other authors ( 2010; ). Identification and characterization of a virus-specific continuous B-cell epitope on the PrM/M protein of Japanese Encephalitis Virus: potential application in the detection of antibodies to distinguish Japanese Encephalitis Virus infection from West Nile Virus and Dengue Virus infections. . Virol J 7:, 249.[CrossRef]
    [Google Scholar]
  18. Huang K. J. , Yang Y. C. , Lin Y. S. , Huang J. H. , Liu H. S. , Yeh T. M. , Chen S. H. , Liu C. C. , Lei H. Y. . ( 2006; ). The dual-specific binding of dengue virus and target cells for the antibody-dependent enhancement of dengue virus infection. . J Immunol 176:, 2825–2832.[PubMed] [CrossRef]
    [Google Scholar]
  19. Kaufman B. M. , Summers P. L. , Dubois D. R. , Cohen W. H. , Gentry M. K. , Timchak R. L. , Burke D. S. , Eckels K. H. . ( 1989; ). Monoclonal antibodies for dengue virus prM glycoprotein protect mice against lethal dengue infection. . Am J Trop Med Hyg 41:, 576–580.[PubMed]
    [Google Scholar]
  20. Kuhn R. J. , Zhang W. , Rossmann M. G. , Pletnev S. V. , Corver J. , Lenches E. , Jones C. T. , Mukhopadhyay S. , Chipman P. R. , Strauss E. G. . ( 2002; ). Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. . Cell 108:, 717–725. [CrossRef] [PubMed]
    [Google Scholar]
  21. Lai C. Y. , Tsai W. Y. , Lin S. R. , Kao C. L. , Hu H. P. , King C. C. , Wu H. C. , Chang G. J. , Wang W. K. . ( 2008; ). Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. . J Virol 82:, 6631–6643. [CrossRef] [PubMed]
    [Google Scholar]
  22. Lin H. E. , Tsai W. Y. , Liu I. J. , Li P. C. , Liao M. Y. , Tsai J. J. , Wu Y. C. , Lai C. Y. , Lu C. H. . & other authors ( 2012; ). Analysis of epitopes on dengue virus envelope protein recognized by monoclonal antibodies and polyclonal human sera by a high throughput assay. . PLoS Negl Trop Dis 6:, e1447. [CrossRef] [PubMed]
    [Google Scholar]
  23. Liu R. , Yue L. , Li X. F. , Yu X. , Zhao H. , Jiang Z. , Qin E. , Qin C. . ( 2010; ). Identification and characterization of small sub-genomic RNAs in dengue 1–4 virus-infected cell cultures and tissues. . Biochem Biophys Res Commun 391:, 1099–1103. [CrossRef] [PubMed]
    [Google Scholar]
  24. Nelson S. , Jost C. A. , Xu Q. , Ess J. , Martin J. E. , Oliphant T. , Whitehead S. S. , Durbin A. P. , Graham B. S. . & other authors ( 2008; ). Maturation of West Nile virus modulates sensitivity to antibody-mediated neutralization. . PLoS Pathog 4:, e1000060.[CrossRef]
    [Google Scholar]
  25. Randolph V. B. , Winkler G. , Stollar V. . ( 1990; ). Acidotropic amines inhibit proteolytic processing of flavivirus prM protein. . Virology 174:, 450–458. [CrossRef] [PubMed]
    [Google Scholar]
  26. Rodenhuis-Zybert I. A. , Wilschut J. , Smit J. M. . ( 2010a; ). Dengue virus life cycle: viral and host factors modulating infectivity. . Cell Mol Life Sci 67:, 2773–2786. [CrossRef] [PubMed]
    [Google Scholar]
  27. Rodenhuis-Zybert I. A. , van der Schaar H. M. , da Silva Voorham J. M. , van der Ende-Metselaar H. , Lei H. Y. , Wilschut J. , Smit J. M. . ( 2010b; ). Immature dengue virus: a veiled pathogen?. PLoS Pathog 6:, e1000718. [CrossRef] [PubMed]
    [Google Scholar]
  28. Sabchareon A. , Wallace D. , Sirivichayakul C. , Limkittikul K. , Chanthavanich P. , Suvannadabba S. , Jiwariyavej V. , Dulyachai W. , Pengsaa K. . & other authors ( 2012; ). Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. . Lancet 380:, 1559–1567. [CrossRef] [PubMed]
    [Google Scholar]
  29. Stadler K. , Allison S. L. , Schalich J. , Heinz F. X. . ( 1997; ). Proteolytic activation of tick-borne encephalitis virus by furin. . J Virol 71:, 8475–8481.[PubMed]
    [Google Scholar]
  30. Steidel M. , Fragnoud R. , Guillotte M. , Roesch C. , Michel S. , Meunier T. , Paranhos-Baccalà G. , Gervasi G. , Bedin F. . ( 2012; ). Nonstructural protein NS1 immunodominant epitope detected specifically in dengue virus infected material by a SELDI-TOF/MS based assay. . J Med Virol 84:, 490–499. [CrossRef] [PubMed]
    [Google Scholar]
  31. Sukupolvi-Petty S. , Austin S. K. , Purtha W. E. , Oliphant T. , Nybakken G. E. , Schlesinger J. J. , Roehrig J. T. , Gromowski G. D. , Barrett A. D. . & other authors ( 2007; ). Type- and subcomplex-specific neutralizing antibodies against domain III of dengue virus type 2 envelope protein recognize adjacent epitopes. . J Virol 81:, 12816–12826. [CrossRef] [PubMed]
    [Google Scholar]
  32. Sun E. , Zhao J. , Liu N. , Yang T. , Xu Q. , Qin Y. , Bu Z. , Yang Y. , Lunt R. A. . & other authors ( 2012; ). Comprehensive mapping of common immunodominant epitopes in the West Nile virus nonstructural protein 1 recognized by avian antibody responses. . PLoS ONE 7:, e31434. [CrossRef] [PubMed]
    [Google Scholar]
  33. Vázquez S. , Guzmán M. G. , Guillen G. , Chinea G. , Pérez A. B. , Pupo M. , Rodriguez R. , Reyes O. , Garay H. E. . & other authors ( 2002; ). Immune response to synthetic peptides of dengue prM protein. . Vaccine 20:, 1823–1830. [CrossRef] [PubMed]
    [Google Scholar]
  34. Whitehead S. S. , Blaney J. E. , Durbin A. P. , Murphy B. R. . ( 2007; ). Prospects for a dengue virus vaccine. . Nat Rev Microbiol 5:, 518–528. [CrossRef] [PubMed]
    [Google Scholar]
  35. WHO ( 2009; ). Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control. , 3rd edn.. Geneva:: WHO Press;.
    [Google Scholar]
  36. Wu H. C. , Jung M. Y. , Chiu C. Y. , Chao T. T. , Lai S. C. , Jan J. T. , Shaio M. F. . ( 2003; ). Identification of a dengue virus type 2 (DEN-2) serotype-specific B-cell epitope and detection of DEN-2-immunized animal serum samples using an epitope-based peptide antigen. . J Gen Virol 84:, 2771–2779. [CrossRef] [PubMed]
    [Google Scholar]
  37. Yoshii K. , Igarashi M. , Ichii O. , Yokozawa K. , Ito K. , Kariwa H. , Takashima I. . ( 2012; ). A conserved region in the prM protein is a critical determinant in the assembly of flavivirus particles. . J Gen Virol 93:, 27–38. [CrossRef] [PubMed]
    [Google Scholar]
  38. Zellweger R. M. , Prestwood T. R. , Shresta S. . ( 2010; ). Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibody-induced severe dengue disease. . Cell Host Microbe 7:, 128–139. [CrossRef] [PubMed]
    [Google Scholar]
  39. Zybert I. A. , van der Ende-Metselaar H. , Wilschut J. , Smit J. M. . ( 2008; ). Functional importance of dengue virus maturation: infectious properties of immature virions. . J Gen Virol 89:, 3047–3051. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.052084-0
Loading
/content/journal/jgv/10.1099/vir.0.052084-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error