1887

Abstract

The constant threat of newly emerging influenza viruses with pandemic potential requires the need for prompt vaccine production. Here, we utilized the Vero cell polymerase I (PolI) promoter, rather than the commonly used human PolI promoter, in an established reverse-genetics system to rescue viable influenza viruses in Vero cells, an approved cell line for human vaccine production. The Vero PolI promoter was more efficient in Vero cells and demonstrated enhanced transcription levels and virus rescue rates commensurate with that of the human RNA PolI promoter in 293T cells. These results appeared to be associated with more efficient generation of A(H1N1)pdm09- and H5N1-derived vaccine seed viruses in Vero cells, whilst the rescue rates in 293T cells were comparable. Our study provides an alternative means for improving vaccine preparation by using a novel reverse-genetics system for generating influenza A viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.051284-0
2013-06-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/6/1230.html?itemId=/content/journal/jgv/10.1099/vir.0.051284-0&mimeType=html&fmt=ahah

References

  1. Barrett P. N., Mundt W., Kistner O., Howard M. K.. ( 2009;). Vero cell platform in vaccine production: moving towards cell culture-based viral vaccines. . Expert Rev Vaccines 8:, 607–618. [CrossRef][PubMed]
    [Google Scholar]
  2. Brands R., Visser J., Medema J., Palache A. M., van Scharrenburg G. J.. ( 1999;). Influvac: a safe Madin Darby canine kidney (MDCK) cell culture-based influenza vaccine. . Dev Biol Stand 98:, 93–100, discussion 111.[PubMed]
    [Google Scholar]
  3. de Wit E., Spronken M. I., Vervaet G., Rimmelzwaan G. F., Osterhaus A. D., Fouchier R. A.. ( 2007;). A reverse-genetics system for influenza A virus using T7 RNA polymerase. . J Gen Virol 88:, 1281–1287. [CrossRef][PubMed]
    [Google Scholar]
  4. Frazzati-Gallina N. M., Paoli R. L., Mourão-Fuches R. M., Jorge S. A., Pereira C. A.. ( 2001;). Higher production of rabies virus in serum-free medium cell cultures on microcarriers. . J Biotechnol 92:, 67–72. [CrossRef][PubMed]
    [Google Scholar]
  5. Hoffmann E., Neumann G., Hobom G., Webster R. G., Kawaoka Y.. ( 2000a;). “Ambisense” approach for the generation of influenza A virus: vRNA and mRNA synthesis from one template. . Virology 267:, 310–317. [CrossRef][PubMed]
    [Google Scholar]
  6. Hoffmann E., Neumann G., Kawaoka Y., Hobom G., Webster R. G.. ( 2000b;). A DNA transfection system for generation of influenza A virus from eight plasmids. . Proc Natl Acad Sci U S A 97:, 6108–6113. [CrossRef][PubMed]
    [Google Scholar]
  7. Horimoto T., Murakami S., Muramoto Y., Yamada S., Fujii K., Kiso M., Iwatsuki-Horimoto K., Kino Y., Kawaoka Y.. ( 2007;). Enhanced growth of seed viruses for H5N1 influenza vaccines. . Virology 366:, 23–27. [CrossRef][PubMed]
    [Google Scholar]
  8. Itoh Y., Shinya K., Kiso M., Watanabe T., Sakoda Y., Hatta M., Muramoto Y., Tamura D., Sakai-Tagawa Y.. & other authors ( 2009;). In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. . Nature 460:, 1021–1025.[PubMed]
    [Google Scholar]
  9. Keitel W. A., Dekker C. L., Mink C., Campbell J. D., Edwards K. M., Patel S. M., Ho D. Y., Talbot H. K., Guo K.. & other authors ( 2009;). Safety and immunogenicity of inactivated, Vero cell culture-derived whole virus influenza A/H5N1 vaccine given alone or with aluminum hydroxide adjuvant in healthy adults. . Vaccine 27:, 6642–6648. [CrossRef][PubMed]
    [Google Scholar]
  10. Kistner O., Barrett P. N., Mundt W., Reiter M., Schober-Bendixen S., Dorner F.. ( 1998;). Development of a mammalian cell (Vero) derived candidate influenza virus vaccine. . Vaccine 16:, 960–968. [CrossRef][PubMed]
    [Google Scholar]
  11. Kistner O., Howard M. K., Spruth M., Wodal W., Brühl P., Gerencer M., Crowe B. A., Savidis-Dacho H., Livey I.. & other authors ( 2007;). Cell culture (Vero) derived whole virus (H5N1) vaccine based on wild-type virus strain induces cross-protective immune responses. . Vaccine 25:, 6028–6036. [CrossRef][PubMed]
    [Google Scholar]
  12. Massin P., Rodrigues P., Marasescu M., van der Werf S., Naffakh N.. ( 2005;). Cloning of the chicken RNA polymerase I promoter and use for reverse genetics of influenza A viruses in avian cells. . J Virol 79:, 13811–13816. [CrossRef][PubMed]
    [Google Scholar]
  13. Montagnon B. J., Fanget B., Vincent-Falquet J. C.. ( 1984;). Industrial-scale production of inactivated poliovirus vaccine prepared by culture of Vero cells on microcarrier. . Rev Infect Dis 6: (Suppl. 2), S341–S344. [CrossRef][PubMed]
    [Google Scholar]
  14. Murakami S., Horimoto T., Yamada S., Kakugawa S., Goto H., Kawaoka Y.. ( 2008;). Establishment of canine RNA polymerase I-driven reverse genetics for influenza A virus: its application for H5N1 vaccine production. . J Virol 82:, 1605–1609. [CrossRef][PubMed]
    [Google Scholar]
  15. Neumann G., Fujii K., Kino Y., Kawaoka Y.. ( 2005;). An improved reverse genetics system for influenza A virus generation and its implications for vaccine production. . Proc Natl Acad Sci U S A 102:, 16825–16829. [CrossRef][PubMed]
    [Google Scholar]
  16. Paule M. R., White R. J.. ( 2000;). Survey and summary: transcription by RNA polymerases I and III. . Nucleic Acids Res 28:, 1283–1298. [CrossRef][PubMed]
    [Google Scholar]
  17. Salomon R., Franks J., Govorkova E. A., Ilyushina N. A., Yen H. L., Hulse-Post D. J., Humberd J., Trichet M., Rehg J. E.. & other authors ( 2006;). The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. . J Exp Med 203:, 689–697. [CrossRef][PubMed]
    [Google Scholar]
  18. Song M.-S., Oh T.-K., Pascua P. N., Moon H.-J., Lee J. H., Baek Y. H., Woo K.-J., Yoon Y., Sung M.-H.. & other authors ( 2009a;). Investigation of the biological indicator for vaccine efficacy against highly pathogenic avian influenza (HPAI) H5N1 virus challenge in mice and ferrets. . Vaccine 27:, 3145–3152. [CrossRef][PubMed]
    [Google Scholar]
  19. Song M.-S., Pascua P. N., Lee J. H., Baek Y. H., Lee O.-J., Kim C.-J., Kim H., Webby R. J., Webster R. G., Choi Y. K.. ( 2009b;). The polymerase acidic protein gene of influenza A virus contributes to pathogenicity in a mouse model. . J Virol 83:, 12325–12335. [CrossRef][PubMed]
    [Google Scholar]
  20. Song M.-S., Lee J. H., Pascua P. N., Baek Y. H., Kwon H.-I., Park K. J., Choi H.-W., Shin Y.-K., Song J.-Y.. & other authors ( 2010;). Evidence of human-to-swine transmission of the pandemic (H1N1) 2009 influenza virus in South Korea. . J Clin Microbiol 48:, 3204–3211. [CrossRef][PubMed]
    [Google Scholar]
  21. Thompson W. W., Shay D. K., Weintraub E., Brammer L., Cox N., Anderson L. J., Fukuda K.. ( 2003;). Mortality associated with influenza and respiratory syncytial virus in the United States. . JAMA (J Am Med Assoc) 289:, 179–186. [CrossRef][PubMed]
    [Google Scholar]
  22. WHO ( 1998;). Requirements for the use of animal cells as in vitro substrates for the production of biologicals. . In WHO Technical Report Series, vol. 878, pp. 20–53. Geneva:: World Health Organization;.
    [Google Scholar]
  23. WHO ( 2005;). WHO Guidance on Development of Influenza Vaccine Reference Viruses by Reverse Genetics 2005. . World Health Organization. http://www.who.int/vaccine_research/diseases/influenza/WHO_guidance_on_development_of_influenza_vaccine_reference_viruses_by_RG_2005_6.pdf
  24. WHO ( 2010;). H1N1 in Post-pandemic Period. . World Health Organization. http://www.who.int/mediacentre/news/statements/2010/h1n1_vpc_20100810/en/index.html
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.051284-0
Loading
/content/journal/jgv/10.1099/vir.0.051284-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error