-
Volume 94,
Issue 6,
2013
Volume 94, Issue 6, 2013
- Review
-
-
-
Innate cellular responses to rotavirus infection
More LessRotavirus is a leading cause of severe dehydrating diarrhoea in infants and young children. Following rotavirus infection in the intestine an innate immune response is rapidly triggered. This response leads to the induction of type I and type III interferons (IFNs) and other cytokines, resulting in a reduction in viral replication. Here we review the current literature describing the detection of rotavirus infection by pattern recognition receptors within host cells, the subsequent molecular mechanisms leading to IFN and cytokine production, and the processes leading to reduced rotavirus replication and the development of protective immunity. Rotavirus countermeasures against innate responses, and their roles in modulating rotavirus replication in mice, also are discussed. By linking these different aspects of innate immunity, we provide a comprehensive overview of the host’s first line of defence against rotavirus infection. Understanding these processes is expected to be of benefit in improving strategies to combat rotavirus disease.
-
-
- Animal
-
- RNA viruses
-
-
A mutation ‘hot spot’ in the Schmallenberg virus M segment
More LessIn the autumn of 2011, Schmallenberg virus (SBV), a novel orthobunyavirus of the Simbu serogroup, was identified by metagenomic analysis in Germany. SBV has since been detected in ruminants all over Europe, and investigations on phylogenetic relationships, clinical signs and epidemiology have been conducted. However, until now, only comparative sequence analysis of SBV genome segments with other species of the Simbu serogroup have been performed, and detailed data on the S and M segments, relevant for virus–host-cell interaction, have been missing. In this study, we investigated the S- and M-segment sequences obtained from 24 SBV-positive field samples from sheep, cattle and a goat collected from all over Germany. The results obtained indicated that the overall genome variability of SBV is neither regionally nor host species dependent. Nevertheless, we characterized for the first time a region of high sequence variability (a mutation ‘hot spot’) within the glycoprotein Gc encoded by the M segment.
-
-
-
In vivo and in vitro identification of a hypervariable region in Schmallenberg virus
More LessDetected for the first time in 2011, Schmallenberg virus (SBV) is an orthobunyavirus of the Simbu serogroup that caused a large outbreak in European ruminants. In a tight time frame, data have been obtained on SBV epidemiology and the clinical pictures associated with this new viral infection, but little information is available on the molecular biology of SBV. In this study, SBV sequence variability was characterized from the central nervous system of two stillborn lambs in a naturally infected herd. A hypervariable region (HVR) was detected in the N-terminal region of the SBV Gc glycoprotein through sequencing and analysis of the two full-length genomes representative of intra-herd SBV dissemination. In vitro growth assays coupled with full-length genome sequencing were performed on the two isolates after successive cellular passages, showing an in vitro adaptation of SBV and mutation accumulation inside the HVR in the absence of immune selective pressure.
-
-
-
Arenavirus reverse genetics for vaccine development
More LessArenaviruses are important human pathogens with no Food and Drug Administration (FDA)-licensed vaccines available and current antiviral therapy being limited to an off-label use of the nucleoside analogue ribavirin of limited prophylactic efficacy. The development of reverse genetics systems represented a major breakthrough in arenavirus research. However, rescue of recombinant arenaviruses using current reverse genetics systems has been restricted to rodent cells. In this study, we describe the rescue of recombinant arenaviruses from human 293T cells and Vero cells, an FDA-approved line for vaccine development. We also describe the generation of novel vectors that mediate synthesis of both negative-sense genome RNA and positive-sense mRNA species of lymphocytic choriomeningitis virus (LCMV) directed by the human RNA polymerases I and II, respectively, within the same plasmid. This approach reduces by half the number of vectors required for arenavirus rescue, which could facilitate virus rescue in cell lines approved for human vaccine production but that cannot be transfected at high efficiencies. We have shown the feasibility of this approach by rescuing both the Old World prototypic arenavirus LCMV and the live-attenuated vaccine Candid#1 strain of the New World arenavirus Junín. Moreover, we show the feasibility of using these novel strategies for efficient rescue of recombinant tri-segmented both LCMV and Candid#1.
-
-
-
Newcastle disease virus fusion and haemagglutinin-neuraminidase proteins contribute to its macrophage host range
The fusion (F) and haemagglutinin-neuraminidase (HN) proteins of Newcastle disease virus (NDV) are multifunctional proteins that play critical roles during infection. Here, we assessed the ability of NDV to replicate in macrophages and investigated the contribution of the F and HN proteins to NDV infection/replication in these cells. Results of our study revealed that, while presenting similar replication kinetics in a fibroblast cell line (DF1) or in primary non-adherent splenocytes, the NDV strain CA02 replicates better in macrophages (HD11 and primary adherent splenocytes) than the NDV strain Anhinga/93. Notably, exchange of the HN or both F and HN genes of NDV Anhinga/93 by the corresponding genes from NDV CA02 markedly improved the ability of the chimeric viruses to replicate in macrophages. These results indicate that the F and HN proteins are determinants of NDV macrophage host range. This represents the first description of productive NDV infection in macrophages.
-
-
-
Creation of a completely helper cell-dependent recombinant morbillivirus
More LessWe have created a completely helper cell-dependent morbillivirus by modifying the genome to remove the coding sequence of the phosphoprotein (P) and recovering the recombinant virus in a cell line constitutively expressing the P protein. The P protein-deleted virus (P−) grew very inefficiently unless both of the viral accessory proteins (V and C) were also expressed. Growth of the virus was restricted to the P-expressing cell line. The P− virus grew more slowly than the parental virus and expressed much less viral protein in infected cells. The technique could be used to create virus-like particles for use as a vaccine or as antigen in immunological or serological assays.
-
-
-
Assessment of the ferret as an in vivo model for mumps virus infection
More LessHumans are the sole reservoir for mumps virus (MuV), the causative agent of mumps. No animal model currently exists; therefore, in vivo knowledge of the virus is limited. Ferrets were assessed for their susceptibility to MuV based on their success as a model for influenza. We infected ferrets with clinical or attenuated vaccine MuVs by the nasal route and demonstrated evidence of immunogenicity in these animals with generation of a serum antibody response specific to MuV infection and cytokine production consistent with infection. However, no live virus or viral RNA was detected in nasal washes, oral swabs, urine, faeces or tissue homogenates, and no animals exhibited clinical signs. We suggest results to be obtained from ferrets are limited in fundamental in vivo MuV research and that they may not be a suitable animal model for this virus.
-
-
-
Detection of novel divergent arenaviruses in boid snakes with inclusion body disease in The Netherlands
Arenaviruses are bi-segmented negative-stranded RNA viruses, which were until recently only detected in rodents and humans. Now highly divergent arenaviruses have been identified in boid snakes with inclusion body disease (IBD). Here, we describe the identification of a new species and variants of the highly divergent arenaviruses, which were detected in tissues of captive boid snakes with IBD in The Netherlands by next-generation sequencing. Phylogenetic analysis of the complete sequence of the open reading frames of the four predicted proteins of one of the detected viruses revealed that this virus was most closely related to the recently identified Golden Gate virus, while considerable sequence differences were observed between the highly divergent arenaviruses detected in this study. These findings add to the recent identification of the highly divergent arenaviruses in boid snakes with IBD in the United States and indicate that these viruses also circulate among boid snakes in Europe.
-
-
-
Antagonism to human BST-2/tetherin by Sendai virus glycoproteins
More LessTetherin is an interferon-inducible factor that restricts viral particle production. We show here that Sendai virus (SeV) induces a drastic decrease in tetherin levels in infected HeLa cells. Using ectopic expression of tetherin in Madin–Darby canine kidney cells, we find that infectious SeV production is sensitive to restriction by tetherin, suggesting that SeV downregulates tetherin to counter this form of cellular restriction. By using radioactive tetherin in pulse–chase experiments, applying conditions that limit protein degradation, and by estimating tetherin mRNA levels, we find that tetherin degradation is the mechanism of downregulation. Suppression of the virus envelope proteins matrix, fusion (F) or haemagglutinin-neuraminidase protein (HN) during the course of infection demonstrates that F and HN, in concert, are responsible for tetherin degradation. The mechanism(s) by which these two viral glycoproteins participate in degrading tetherin remains to be determined.
-
-
-
Mutations in haemagglutinin that affect receptor binding and pH stability increase replication of a PR8 influenza virus with H5 HA in the upper respiratory tract of ferrets and may contribute to transmissibility
More LessThe H5N1 influenza A viruses have circulated widely in the avian population for 10 years with only sporadic infection of humans observed and no sustained human to human transmission. Vaccination against potential pandemic strains is one strategy in planning for future influenza pandemics; however, the success of live attenuated vaccines for H5N1 has been limited, due to poor replication in the human upper respiratory tract (URT). Mutations that increase the ability of H5N1 viruses to replicate in the URT will aid immunogenicity of these vaccines and provide information about humanizing adaptations in H5N1 strains that may signal transmissibility. As well as mediating receptor interactions, the haemagglutinin (HA) protein of influenza facilitates fusion of the viral membrane and genome entry into the host cell; this process is pH dependent. We have shown in this study that the pH at which a panel of avian influenza HA proteins, including H5, mediate fusion is higher than that for human influenza HA proteins, and that mutations in the H5 HA can reduce the pH of fusion. Coupled with receptor switching mutations, increasing the pH stability of the H5 HA resulted in increased viral shedding of H5N1 from the nasal cavity of ferrets and contact transmission to a co-housed animal. Ferret serum antibodies induced by infection with any of the mutated H5 HA viruses neutralized HA pseudotyped lentiviruses bearing homologous or heterologous H5 HAs, suggesting that this strategy to increase nasal replication of a vaccine virus would not compromise vaccine efficacy.
-
-
-
Establishment of Vero cell RNA polymerase I-driven reverse genetics for Influenza A virus and its application for pandemic (H1N1) 2009 influenza virus vaccine production
The constant threat of newly emerging influenza viruses with pandemic potential requires the need for prompt vaccine production. Here, we utilized the Vero cell polymerase I (PolI) promoter, rather than the commonly used human PolI promoter, in an established reverse-genetics system to rescue viable influenza viruses in Vero cells, an approved cell line for human vaccine production. The Vero PolI promoter was more efficient in Vero cells and demonstrated enhanced transcription levels and virus rescue rates commensurate with that of the human RNA PolI promoter in 293T cells. These results appeared to be associated with more efficient generation of A(H1N1)pdm09- and H5N1-derived vaccine seed viruses in Vero cells, whilst the rescue rates in 293T cells were comparable. Our study provides an alternative means for improving vaccine preparation by using a novel reverse-genetics system for generating influenza A viruses.
-
-
-
Genotype patterns of contemporary reassorted H3N2 virus in US swine
To understand the evolution of swine-origin H3N2v influenza viruses that have infected 320 humans in the USA since August 2011, we performed a phylogenetic analysis at a whole genome scale of North American swine influenza viruses (n = 200). All viral isolates evolved from the prototypical North American H3 cluster 4 (c4), with evidence for further diversification into subclusters. At least ten distinct reassorted H3N2/pandemic H1N1 (rH3N2p) genotypes were identified in swine. Genotype 1 (G1) was most frequently detected in swine and all human H3N2v viruses clustered within a single G1 clade. These data suggest that the genetic requirements for transmission to humans may be restricted to a specific subset of swine viruses. Mutations at putative antigenic sites as well as reduced serological cross-reactivity among the H3 subclusters suggest antigenic drift of these contemporary viruses.
-
-
-
Isolation and full genomic characterization of Batai virus from mosquitoes, Italy 2009
In 2009, 2589 mosquitoes were collected in northwest Italy and screened for orthobunyavirus RNA by RT-PCR. One pool of Anopheles maculipennis complex mosquitoes was found to be positive and a virus was isolated from that pool. The isolate was identified as Batai virus (BATV) by sequencing. Previously, BATV was detected in Italy, but limited data and no prior isolates existed. Full-length sequences of the S, M and L segments were determined for the newly isolated Italian strain. For comparison, partial sequences were also determined for the BATV strain Calovo (former Czechoslovakia, 1960). Phylogenetic analyses revealed clustering of the newly derived Italian BATV along with a recent isolate from Germany and the historic strain Calovo. To the best of our knowledge, this represents the first isolation of BATV from Italy, which confirms a broader geographical distribution of BATV in Europe than was previously verified by isolation.
-
-
-
Low levels of foot-and-mouth disease virus 3C protease expression are required to achieve optimal capsid protein expression and processing in mammalian cells
More LessThe foot-and-mouth disease virus (FMDV) capsid protein precursor (P1-2A) is processed by the virus-encoded 3C protease (3Cpro) to produce VP0, VP3, VP1 and 2A. Within the virus-encoded polyprotein, the P1-2A and 3Cpro can be expected to be produced at equivalent concentrations. However, using transient-expression assays, within mammalian cells, it is possible to modify the relative amounts of the substrate and protease. It has now been shown that optimal production of the processed capsid proteins from P1-2A is achieved with reduced levels of 3Cpro expression, relative to the P1-2A, compared with that achieved with a single P1-2A-3C polyprotein. Expression of the FMDV 3Cpro is poorly tolerated by mammalian cells and higher levels of the 3Cpro greatly inhibit protein expression. In addition, it is demonstrated that both the intact P1-2A precursor and the processed capsid proteins can be efficiently detected by FMDV antigen detection assays. Furthermore, the P1-2A and the processed forms each bind to the integrin αvβ6, the major FMDV receptor. These results contribute to the development of systems which efficiently express the components of empty capsid particles and may represent the basis for safer production of diagnostic reagents and improved vaccines against foot-and-mouth disease.
-
-
-
‘Favourable’ IL28B polymorphisms are associated with a marked increase in baseline viral load in hepatitis C virus subtype 3a infection and do not predict a sustained virological response after 24 weeks of therapy
IL28B host genetic make-up is known to play a critical role in the outcome of genotype 1 hepatitis C virus (HCV) infection in the context of both primary infection and therapy. However, the role of IL28B in subtype 3a infection remains unclear, and has not yet been assessed in the UK population where subtype 3a is dominant. In this study, we evaluated the role of the IL28B single-nucleotide polymorphism rs8099917 in 201 patients recruited from two well-defined cohorts (from Nottingham and Oxford), treated with the standard-of-care therapy of pegylated interferon and ribavirin for 24 weeks. We showed that the ‘favourable’ IL28B gene was associated with a rapid virological response to therapy at 4 weeks (P<0.0001), but not with a sustained virological response to therapy. The median viral load at baseline, before therapy, was markedly increased in people with the ‘favourable’ IL28B genotype [median viral load for the TT allele, 925 961 IU ml−1 (range 2200–21 116 965 IU ml−1), and for the GT or GG allele, 260 284 IU ml−1 (range 740–7 560 000 IU ml−1); P = 0.0010]. Our results suggest that the host genetic response plays an important role in early viral clearance of subtype 3a virus from the blood. However, significant reservoirs of infection must persist, as viral relapse is common, even in those with the favourable host genotype.
-
-
-
Characterization of a novel flavivirus isolated from Culex (Melanoconion) ocossa mosquitoes from Iquitos, Peru
We describe the isolation and characterization of a novel flavivirus, isolated from a pool of Culex (Melanoconion) ocossa Dyar and Knab mosquitoes collected in 2009 in an urban area of the Amazon basin city of Iquitos, Peru. Flavivirus infection was detected by indirect immunofluorescent assay of inoculated C6/36 cells using polyclonal flavivirus antibodies (St. Louis encephalitis virus, yellow fever virus and dengue virus type 1) and confirmed by RT-PCR. Based on partial sequencing of the E and NS5 gene regions, the virus isolate was most closely related to the mosquito-borne flaviviruses but divergent from known species, with less than 45 and 71 % pairwise amino acid identity in the E and NS5 gene products, respectively. Phylogenetic analysis of E and NS5 amino acid sequences demonstrated that this flavivirus grouped with mosquito-borne flaviviruses, forming a clade with Nounané virus (NOUV). Like NOUV, no replication was detected in a variety of mammalian cells (Vero-76, Vero-E6, BHK, LLCMK, MDCK, A549 and RD) or in intracerebrally inoculated newborn mice. We tentatively designate this genetically distinct flavivirus as representing a novel species, Nanay virus, after the river near where it was first detected.
-
-
-
G8 rotaviruses with conserved genotype constellations detected in Malawi over 10 years (1997–2007) display frequent gene reassortment among strains co-circulating in humans
Rotavirus A, the most common cause of severe diarrhoea in children worldwide, occurs in five major VP7 (G) and VP4 (P) genotype combinations, comprising G1P[8], G2P[4], G3P[8], G4P[8] and G9P[8]. However, G8, a common bovine rotavirus genotype, has been reported frequently among children in African countries. Surveillance of rotavirus gastroenteritis conducted in a sentinel hospital in Blantyre, Malawi between 1997 and 2007 provided a rare opportunity to examine the whole genotype constellation of G8 strains and their evolution over time. A sample of 27 (9.0 %) of 299 G8 strains was selected to represent each surveillance year and a range of P genotypes, which shifted in predominance from P[6] to P[4] and P[8] during the study period. Following cell culture adaptation, whole genome sequencing demonstrated that the genetic background of 26 strains possessed the DS-1 genotype constellation. A single G8P[6] strain was a reassortant in which both NSP2 and NSP5 genes from strains with the Wa genotype constellation had been inserted into a strain with the DS-1 genotype background. Phylogenetic analysis suggested frequent reassortment among co-circulating strains with the DS-1 genotype constellation. Little evidence was identified to suggest the introduction of contemporary bovine rotavirus genes into any of the 27 G8 strains examined. In conclusion, Malawian G8 strains are closely related to other human strains with the DS-1 genotype constellation. They have evolved over the last decade through genetic reassortment with other human rotaviruses, changing their VP4 genotypes while maintaining a conserved genotype constellation for the remaining structural and non-structural proteins.
-
-
-
Mutations in the rotavirus spike protein VP4 reduce trypsin sensitivity but not viral spread
More LessInfectious entry of the nonenveloped rotavirus virion requires proteolysis of the spike protein VP4 to mediate conformational changes associated with membrane penetration. We sequenced and characterized an isolate that was cultured in the absence of trypsin and found that it is more resistant to proteolysis than WT virus. A substitution mutation abrogates one of the defined trypsin-cleavage sites, suggesting that blocking proteolysis at this site reduces the overall kinetics of proteolysis. Kinetic analysis of the membrane penetration-associated conformational change indicated that the ‘fold-back’ of the mutant spike protein is slower than that of WT. Despite these apparent biochemical defects, the mutant virus replicates in an identical manner to the WT virus. These findings enhance an understanding of VP4 functions and establish new strategies to interrogate rotavirus cell entry.
-
-
-
Quantitative in vivo and in vitro characterization of co-infection by two genetically distant grass carp reoviruses
More LessGrass carp reovirus (GCRV) is one of the most serious pathogens threatening grass carp (Ctenopharyngodon idella) production in China. Through sequence analysis, the co-existence of two genetically distant grass carp reoviruses, named GCRV-JX01 and GCRV-JX02, was revealed in the same diseased grass carp sample collected in 2011. GCRV-JX01 and GCRV-JX02 shared high levels of homology with GCRV-873 and GCRV-GD108, respectively. In contrast to GCRV-JX01, GCRV-JX02 induced no cytopathic effect in infected cells. A quantitative real-time PCR assay was employed to monitor the replication efficiency of both virus strains in either Ctenopharyngodon idella kidney (CIK) cells or infected cell supernatant. The results demonstrated that, although GCRV-JX02 did reduce the cellular replication level of GCRV-JX01 up to 10-fold during co-infection, there was no significant impact on the productive virus progeny level in supernatant compared to that of cells infected by GCRV-JX01 alone. To validate the hypothesis that both viruses might co-infect grass carp without significant interference in the field, we collected clinical samples from two different fish farms in 2012 and monitored virus loads for each fish. The data showed that 55 % of the collected fish samples were co-infected by GCRV-JX01 and GCRV-JX02, and the single virus infection rate was 10 % for GCRV-JX01 and 20 % for GCRV-JX02. For both viruses, the in vivo viral loads under co-infection and single viral infection were similar. No serological cross-reaction or cross-protection occurred between GCRV-JX01 and JX02 in our immunization and challenge tests. This new information on co-infection by two genetically distant virus strains should be helpful for designing vaccines targeting the causative agents of grass carp haemorrhagic disease.
-
-
-
Inhibition of rotavirus replication by downregulation of fatty acid synthesis
More LessRecently the recruitment of lipid droplets (LDs) to sites of rotavirus (RV) replication was reported. LDs are polymorphic organelles that store triacylglycerols, cholesterol and cholesterol esters. The neutral fats are derived from palmitoyl-CoA, synthesized via the fatty acid biosynthetic pathway. RV-infected cells were treated with chemical inhibitors of the fatty acid biosynthetic pathway, and the effects on viral replication kinetics were assessed. Treatment with compound C75, an inhibitor of the fatty acid synthase enzyme complex (FASN), reduced RV infectivity 3.2-fold (P = 0.07) and modestly reduced viral RNA synthesis (1.2-fold). Acting earlier in the fatty acid synthesis pathway, TOFA [5-(Tetradecyloxy)-2-furoic acid] inhibits the enzyme acetyl-CoA carboxylase 1 (ACC1). TOFA reduced the infectivity of progeny RV 31-fold and viral RNA production 6-fold. The effect of TOFA on RV infectivity and RNA replication was dose-dependent, and infectivity was reduced by administering TOFA up to 4 h post-infection. Co-treatment of RV-infected cells with C75 and TOFA synergistically reduced viral infectivity. Knockdown by siRNA of FASN and ACC1 produced findings similar to those observed by inhibiting these proteins with the chemical compounds. Inhibition of fatty acid synthesis using a range of approaches uniformly had a more marked impact on viral infectivity than on viral RNA yield, inferring a role for LDs in virus assembly and/or egress. Specific inhibitors of fatty acid metabolism may help pinpoint the critical structural and biochemical features of LDs that are essential for RV replication, and facilitate the development of antiviral therapies.
-
Volumes and issues
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month
