1887

Abstract

Arenaviruses are important human pathogens with no Food and Drug Administration (FDA)-licensed vaccines available and current antiviral therapy being limited to an off-label use of the nucleoside analogue ribavirin of limited prophylactic efficacy. The development of reverse genetics systems represented a major breakthrough in arenavirus research. However, rescue of recombinant arenaviruses using current reverse genetics systems has been restricted to rodent cells. In this study, we describe the rescue of recombinant arenaviruses from human 293T cells and Vero cells, an FDA-approved line for vaccine development. We also describe the generation of novel vectors that mediate synthesis of both negative-sense genome RNA and positive-sense mRNA species of lymphocytic choriomeningitis virus (LCMV) directed by the human RNA polymerases I and II, respectively, within the same plasmid. This approach reduces by half the number of vectors required for arenavirus rescue, which could facilitate virus rescue in cell lines approved for human vaccine production but that cannot be transfected at high efficiencies. We have shown the feasibility of this approach by rescuing both the Old World prototypic arenavirus LCMV and the live-attenuated vaccine Candid#1 strain of the New World arenavirus Junín. Moreover, we show the feasibility of using these novel strategies for efficient rescue of recombinant tri-segmented both LCMV and Candid#1.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.051102-0
2013-06-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/6/1175.html?itemId=/content/journal/jgv/10.1099/vir.0.051102-0&mimeType=html&fmt=ahah

References

  1. Albariño C. G., Bergeron E., Erickson B. R., Khristova M. L., Rollin P. E., Nichol S. T.. ( 2009;). Efficient reverse genetics generation of infectious junin viruses differing in glycoprotein processing. . J Virol 83:, 5606–5614. [CrossRef][PubMed]
    [Google Scholar]
  2. Albariño C. G., Bird B. H., Chakrabarti A. K., Dodd K. A., Erickson B. R., Nichol S. T.. ( 2011a;). Efficient rescue of recombinant Lassa virus reveals the influence of S segment noncoding regions on virus replication and virulence. . J Virol 85:, 4020–4024. [CrossRef][PubMed]
    [Google Scholar]
  3. Albariño C. G., Bird B. H., Chakrabarti A. K., Dodd K. A., White D. M., Bergeron E., Shrivastava-Ranjan P., Nichol S. T.. ( 2011b;). Reverse genetics generation of chimeric infectious Junin/Lassa virus is dependent on interaction of homologous glycoprotein stable signal peptide and G2 cytoplasmic domains. . J Virol 85:, 112–122. [CrossRef][PubMed]
    [Google Scholar]
  4. Barton L. L.. ( 1996;). Lymphocytic choriomeningitis virus: a neglected central nervous system pathogen. . Clin Infect Dis 22:, 197. [CrossRef][PubMed]
    [Google Scholar]
  5. Battegay M., Cooper S., Althage A., Bänziger J., Hengartner H., Zinkernagel R. M.. ( 1991;). Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24- or 96-well plates. . J Virol Methods 33:, 191–198. [CrossRef][PubMed]
    [Google Scholar]
  6. Bergeron E., Chakrabarti A. K., Bird B. H., Dodd K. A., McMullan L. K., Spiropoulou C. F., Nichol S. T., Albariño C. G.. ( 2012;). Reverse genetics recovery of Lujo virus and role of virus RNA secondary structures in efficient virus growth. . J Virol 86:, 10759–10765. [CrossRef][PubMed]
    [Google Scholar]
  7. Billecocq A., Gauliard N., Le May N., Elliott R. M., Flick R., Bouloy M.. ( 2008;). RNA polymerase I-mediated expression of viral RNA for the rescue of infectious virulent and avirulent Rift Valley fever viruses. . Virology 378:, 377–384. [CrossRef][PubMed]
    [Google Scholar]
  8. Bortz E., Westera L., Maamary J., Steel J., Albrecht R. A., Manicassamy B., Chase G., Martinez-Sobrido L., Schwemmle M.. & other authors ( 2011;). Host- and strain-specific regulation of influenza virus polymerase activity by interacting cellular proteins. . mBio 2:, e00151. [CrossRef]
    [Google Scholar]
  9. Bridgen A., Weber F., Fazakerley J. K., Elliott R. M.. ( 2001;). Bunyamwera bunyavirus nonstructural protein NSs is a nonessential gene product that contributes to viral pathogenesis. . Proc Natl Acad Sci U S A 98:, 664–669. [CrossRef][PubMed]
    [Google Scholar]
  10. Buchmeier M. J., Peters C. J., de la Torre J. C.. ( 2007;). Arenaviridae: the viruses and their replication. . In Fields Virology, , 5th edn., vol. 2, pp. 1792–1827. Edited by Fields B. N., Knipe D. M., Howley P. M... Baltimore:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  11. Buettner N., Vogt C., Martínez-Sobrido L., Weber F., Waibler Z., Kochs G.. ( 2010;). Thogoto virus ML protein is a potent inhibitor of the interferon regulatory factor-7 transcription factor. . J Gen Virol 91:, 220–227. [CrossRef][PubMed]
    [Google Scholar]
  12. Campbell Dwyer E. J., Lai H., MacDonald R. C., Salvato M. S., Borden K. L.. ( 2000;). The lymphocytic choriomeningitis virus RING protein Z associates with eukaryotic initiation factor 4E and selectively represses translation in a RING-dependent manner. . J Virol 74:, 3293–3300. [CrossRef][PubMed]
    [Google Scholar]
  13. Capul A. A., de la Torre J. C.. ( 2008;). A cell-based luciferase assay amenable to high-throughput screening of inhibitors of arenavirus budding. . Virology 382:, 107–114. [CrossRef][PubMed]
    [Google Scholar]
  14. Carnec X., Baize S., Reynard S., Diancourt L., Caro V., Tordo N., Bouloy M.. ( 2011;). Lassa virus nucleoprotein mutants generated by reverse genetics induce a robust type I interferon response in human dendritic cells and macrophages. . J Virol 85:, 12093–12097. [CrossRef][PubMed]
    [Google Scholar]
  15. Davtyan H., Ghochikyan A., Cadagan R., Zamarin D., Petrushina I., Movsesyan N., Martinez-Sobrido L., Albrecht R. A., García-Sastre A., Agadjanyan M. G.. ( 2011;). The immunological potency and therapeutic potential of a prototype dual vaccine against influenza and Alzheimer’s disease. . J Transl Med 9:, 127. [CrossRef][PubMed]
    [Google Scholar]
  16. de Wit E., Spronken M. I., Vervaet G., Rimmelzwaan G. F., Osterhaus A. D., Fouchier R. A.. ( 2007;). A reverse-genetics system for Influenza A virus using T7 RNA polymerase. . J Gen Virol 88:, 1281–1287. [CrossRef][PubMed]
    [Google Scholar]
  17. Delgado S., Erickson B. R., Agudo R., Blair P. J., Vallejo E., Albariño C. G., Vargas J., Comer J. A., Rollin P. E.. & other authors ( 2008;). Chapare virus, a newly discovered arenavirus isolated from a fatal hemorrhagic fever case in Bolivia. . PLoS Pathog 4:, e1000047. [CrossRef][PubMed]
    [Google Scholar]
  18. Durbin A. P., Siew J. W., Murphy B. R., Collins P. L.. ( 1997;). Minimum protein requirements for transcription and RNA replication of a minigenome of human parainfluenza virus type 3 and evaluation of the rule of six. . Virology 234:, 74–83. [CrossRef][PubMed]
    [Google Scholar]
  19. Emonet S. F., Garidou L., McGavern D. B., de la Torre J. C.. ( 2009;). Generation of recombinant lymphocytic choriomeningitis viruses with trisegmented genomes stably expressing two additional genes of interest. . Proc Natl Acad Sci U S A 106:, 3473–3478. [CrossRef][PubMed]
    [Google Scholar]
  20. Emonet S. E., Urata S., de la Torre J. C.. ( 2011a;). Arenavirus reverse genetics: new approaches for the investigation of arenavirus biology and development of antiviral strategies. . Virology 411:, 416–425. [CrossRef][PubMed]
    [Google Scholar]
  21. Emonet S. F., Seregin A. V., Yun N. E., Poussard A. L., Walker A. G., de la Torre J. C., Paessler S.. ( 2011b;). Rescue from cloned cDNAs and in vivo characterization of recombinant pathogenic Romero and live-attenuated Candid #1 strains of Junin virus, the causative agent of Argentine hemorrhagic fever disease. . J Virol 85:, 1473–1483. [CrossRef][PubMed]
    [Google Scholar]
  22. Feng L., Li F., Zheng X., Pan W., Zhou K., Liu Y., He H., Chen L.. ( 2009;). The mouse Pol I terminator is more efficient than the hepatitis delta virus ribozyme in generating influenza-virus-like RNAs with precise 3′ ends in a plasmid-only-based virus rescue system. . Arch Virol 154:, 1151–1156. [CrossRef][PubMed]
    [Google Scholar]
  23. Fischer S. A., Graham M. B., Kuehnert M. J., Kotton C. N., Srinivasan A., Marty F. M., Comer J. A., Guarner J., Paddock C. D.. & other authors ( 2006;). Transmission of lymphocytic choriomeningitis virus by organ transplantation. . N Engl J Med 354:, 2235–2249. [CrossRef][PubMed]
    [Google Scholar]
  24. Flatz L., Bergthaler A., de la Torre J. C., Pinschewer D. D.. ( 2006;). Recovery of an arenavirus entirely from RNA polymerase I/II-driven cDNA. . Proc Natl Acad Sci U S A 103:, 4663–4668. [CrossRef][PubMed]
    [Google Scholar]
  25. Fodor E., Devenish L., Engelhardt O. G., Palese P., Brownlee G. G., García-Sastre A.. ( 1999;). Rescue of influenza A virus from recombinant DNA. . J Virol 73:, 9679–9682.[PubMed]
    [Google Scholar]
  26. García-Sastre A., Palese P.. ( 1993;). Genetic manipulation of negative-strand RNA virus genomes. . Annu Rev Microbiol 47:, 765–790. [CrossRef][PubMed]
    [Google Scholar]
  27. García-Sastre A., Egorov A., Matassov D., Brandt S., Levy D. E., Durbin J. E., Palese P., Muster T.. ( 1998;). Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. . Virology 252:, 324–330. [CrossRef][PubMed]
    [Google Scholar]
  28. Gómez-Puertas P., Albo C., Pérez-Pastrana E., Vivo A., Portela A.. ( 2000;). Influenza virus matrix protein is the major driving force in virus budding. . J Virol 74:, 11538–11547. [CrossRef][PubMed]
    [Google Scholar]
  29. Grimm D., Staeheli P., Hufbauer M., Koerner I., Martínez-Sobrido L., Solórzano A., García-Sastre A., Haller O., Kochs G.. ( 2007;). Replication fitness determines high virulence of influenza A virus in mice carrying functional Mx1 resistance gene. . Proc Natl Acad Sci U S A 104:, 6806–6811. [CrossRef][PubMed]
    [Google Scholar]
  30. Hai R., Martínez-Sobrido L., Fraser K. A., Ayllon J., García-Sastre A., Palese P.. ( 2008;). Influenza B virus NS1-truncated mutants: live-attenuated vaccine approach. . J Virol 82:, 10580–10590. [CrossRef][PubMed]
    [Google Scholar]
  31. Hale B. G., Randall R. E., Ortín J., Jackson D.. ( 2008;). The multifunctional NS1 protein of influenza A viruses. . J Gen Virol 89:, 2359–2376. [CrossRef][PubMed]
    [Google Scholar]
  32. Hass M., Gölnitz U., Müller S., Becker-Ziaja B., Günther S.. ( 2004;). Replicon system for Lassa virus. . J Virol 78:, 13793–13803. [CrossRef][PubMed]
    [Google Scholar]
  33. Heix J., Grummt I.. ( 1995;). Species specificity of transcription by RNA polymerase I. . Curr Opin Genet Dev 5:, 652–656. [CrossRef][PubMed]
    [Google Scholar]
  34. Herfst S., Schrauwen E. J., Linster M., Chutinimitkul S., de Wit E., Munster V. J., Sorrell E. M., Bestebroer T. M., Burke D. F.. & other authors ( 2012;). Airborne transmission of influenza A/H5N1 virus between ferrets. . Science 336:, 1534–1541. [CrossRef][PubMed]
    [Google Scholar]
  35. Hoffmann E., Neumann G., Hobom G., Webster R. G., Kawaoka Y.. ( 2000;). “Ambisense” approach for the generation of influenza A virus: vRNA and mRNA synthesis from one template. . Virology 267:, 310–317. [CrossRef][PubMed]
    [Google Scholar]
  36. Holmes G. P., McCormick J. B., Trock S. C., Chase R. A., Lewis S. M., Mason C. A., Hall P. A., Brammer L. S., Perez-Oronoz G. I.. & other authors ( 1990;). Lassa fever in the United States.. N Engl J Med 323:, 1120–1123. [CrossRef][PubMed]
    [Google Scholar]
  37. Isaäcson M.. ( 2001;). Viral hemorrhagic fever hazards for travelers in Africa. . Clin Infect Dis 33:, 1707–1712. [CrossRef][PubMed]
    [Google Scholar]
  38. Jahrling P. B., Peters C. J.. ( 1992;). Lymphocytic choriomeningitis virus. A neglected pathogen of man. . Arch Pathol Lab Med 116:, 486–488.[PubMed]
    [Google Scholar]
  39. James P., Halladay J., Craig E. A.. ( 1996;). Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. . Genetics 144:, 1425–1436.[PubMed]
    [Google Scholar]
  40. Kilgore P. E., Ksiazek T. G., Rollin P. E., Mills J. N., Villagra M. R., Montenegro M. J., Costales M. A., Paredes L. C., Peters C. J.. ( 1997;). Treatment of Bolivian hemorrhagic fever with intravenous ribavirin. . Clin Infect Dis 24:, 718–722. [CrossRef][PubMed]
    [Google Scholar]
  41. Kochs G., García-Sastre A., Martínez-Sobrido L.. ( 2007;). Multiple anti-interferon actions of the influenza A virus NS1 protein. . J Virol 81:, 7011–7021. [CrossRef][PubMed]
    [Google Scholar]
  42. Kranzusch P. J., Whelan S. P.. ( 2011;). Arenavirus Z protein controls viral RNA synthesis by locking a polymerase-promoter complex. . Proc Natl Acad Sci U S A 108:, 19743–19748. [CrossRef][PubMed]
    [Google Scholar]
  43. Lan S., McLay Schelde L., Wang J., Kumar N., Ly H., Liang Y.. ( 2009;). Development of infectious clones for virulent and avirulent pichinde viruses: a model virus to study arenavirus-induced hemorrhagic fevers. . J Virol 83:, 6357–6362. [CrossRef][PubMed]
    [Google Scholar]
  44. Lee K. J., Novella I. S., Teng M. N., Oldstone M. B., de La Torre J. C.. ( 2000;). NP and L proteins of lymphocytic choriomeningitis virus (LCMV) are sufficient for efficient transcription and replication of LCMV genomic RNA analogs. . J Virol 74:, 3470–3477. [CrossRef][PubMed]
    [Google Scholar]
  45. Lee K. J., Perez M., Pinschewer D. D., de la Torre J. C.. ( 2002;). Identification of the lymphocytic choriomeningitis virus (LCMV) proteins required to rescue LCMV RNA analogs into LCMV-like particles. . J Virol 76:, 6393–6397. [CrossRef][PubMed]
    [Google Scholar]
  46. Li Y., Luo L., Schubert M., Wagner R. R., Kang C. Y.. ( 1993;). Viral liposomes released from insect cells infected with recombinant baculovirus expressing the matrix protein of vesicular stomatitis virus. . J Virol 67:, 4415–4420.[PubMed]
    [Google Scholar]
  47. López N., Jácamo R., Franze-Fernández M. T.. ( 2001;). Transcription and RNA replication of tacaribe virus genome and antigenome analogs require N and L proteins: Z protein is an inhibitor of these processes. . J Virol 75:, 12241–12251. [CrossRef][PubMed]
    [Google Scholar]
  48. Martínez-Sobrido L., García-Sastre A.. ( 2010;). Generation of recombinant influenza virus from plasmid DNA. . J Vis Exp 42: e2057. [CrossRef][PubMed]
    [Google Scholar]
  49. Mayer D., Molawi K., Martínez-Sobrido L., Ghanem A., Thomas S., Baginsky S., Grossmann J., García-Sastre A., Schwemmle M.. ( 2007;). Identification of cellular interaction partners of the influenza virus ribonucleoprotein complex and polymerase complex using proteomic-based approaches. . J Proteome Res 6:, 672–682. [CrossRef][PubMed]
    [Google Scholar]
  50. McKee K. T. Jr, Huggins J. W., Trahan C. J., Mahlandt B. G.. ( 1988;). Ribavirin prophylaxis and therapy for experimental argentine hemorrhagic fever. . Antimicrob Agents Chemother 32:, 1304–1309. [CrossRef][PubMed]
    [Google Scholar]
  51. Mets M. B., Barton L. L., Khan A. S., Ksiazek T. G.. ( 2000;). Lymphocytic choriomeningitis virus: an underdiagnosed cause of congenital chorioretinitis. . Am J Ophthalmol 130:, 209–215. [CrossRef][PubMed]
    [Google Scholar]
  52. Mibayashi M., Martínez-Sobrido L., Loo Y. M., Cárdenas W. B., Gale M. Jr, García-Sastre A.. ( 2007;). Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. . J Virol 81:, 514–524. [CrossRef][PubMed]
    [Google Scholar]
  53. Mistry N., Shapero J., Crawford R. I.. ( 2009;). A review of adverse cutaneous drug reactions resulting from the use of interferon and ribavirin. . Can J Gastroenterol 23:, 677–683.[PubMed]
    [Google Scholar]
  54. Morimoto K., Foley H. D., McGettigan J. P., Schnell M. J., Dietzschold B.. ( 2000;). Reinvestigation of the role of the rabies virus glycoprotein in viral pathogenesis using a reverse genetics approach. . J Neurovirol 6:, 373–381. [CrossRef][PubMed]
    [Google Scholar]
  55. Murakami S., Horimoto T., Yamada S., Kakugawa S., Goto H., Kawaoka Y.. ( 2008;). Establishment of canine RNA polymerase I-driven reverse genetics for influenza A virus: its application for H5N1 vaccine production. . J Virol 82:, 1605–1609. [CrossRef][PubMed]
    [Google Scholar]
  56. Nagai Y.. ( 1999;). Paramyxovirus replication and pathogenesis. Reverse genetics transforms understanding. . Rev Med Virol 9:, 83–99. [CrossRef][PubMed]
    [Google Scholar]
  57. Nakajima Y., Kobayashi K., Yamagishi K., Enomoto T., Ohmiya Y.. ( 2004;). cDNA cloning and characterization of a secreted luciferase from the luminous Japanese ostracod, Cypridina noctiluca. . Biosci Biotechnol Biochem 68:, 565–570. [CrossRef][PubMed]
    [Google Scholar]
  58. Neumann G., Kawaoka Y.. ( 2004;). Reverse genetics systems for the generation of segmented negative-sense RNA viruses entirely from cloned cDNA. . Curr Top Microbiol Immunol 283:, 43–60.[PubMed]
    [Google Scholar]
  59. Neumann G., Watanabe T., Ito H., Watanabe S., Goto H., Gao P., Hughes M., Perez D. R., Donis R.. & other authors ( 1999;). Generation of influenza A viruses entirely from cloned cDNAs. . Proc Natl Acad Sci U S A 96:, 9345–9350. [CrossRef][PubMed]
    [Google Scholar]
  60. Neumann G., Whitt M. A., Kawaoka Y.. ( 2002a;). A decade after the generation of a negative-sense RNA virus from cloned cDNA – what have we learned?. J Gen Virol 83:, 2635–2662.[PubMed]
    [Google Scholar]
  61. Neumann G., Feldmann H., Watanabe S., Lukashevich I., Kawaoka Y.. ( 2002b;). Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. . J Virol 76:, 406–410. [CrossRef][PubMed]
    [Google Scholar]
  62. Nicolson C., Major D., Wood J. M., Robertson J. S.. ( 2005;). Generation of influenza vaccine viruses on Vero cells by reverse genetics: an H5N1 candidate vaccine strain produced under a quality system. . Vaccine 23:, 2943–2952. [CrossRef][PubMed]
    [Google Scholar]
  63. Ortiz-Riaño E., Cheng B. Y. H., de la Torre J. C., Martínez-Sobrido L.. ( 2012;). D471G mutation in LCMV-NP affects its ability to self-associate and results in a dominant negative effect in viral RNA synthesis. . Viruses 4:, 2137–2161. [CrossRef][PubMed]
    [Google Scholar]
  64. Palacios G., Druce J., Du L., Tran T., Birch C., Briese T., Conlan S., Quan P. L., Hui J.. & other authors ( 2008;). A new arenavirus in a cluster of fatal transplant-associated diseases. . N Engl J Med 358:, 991–998. [CrossRef][PubMed]
    [Google Scholar]
  65. Pekosz A., He B., Lamb R. A.. ( 1999;). Reverse genetics of negative-strand RNA viruses: closing the circle. . Proc Natl Acad Sci U S A 96:, 8804–8806. [CrossRef][PubMed]
    [Google Scholar]
  66. Perez M., Craven R. C., de la Torre J. C.. ( 2003;). The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. . Proc Natl Acad Sci U S A 100:, 12978–12983. [CrossRef][PubMed]
    [Google Scholar]
  67. Perrotta A. T., Been M. D.. ( 1990;). The self-cleaving domain from the genomic RNA of hepatitis delta virus: sequence requirements and the effects of denaturant. . Nucleic Acids Res 18:, 6821–6827. [CrossRef][PubMed]
    [Google Scholar]
  68. Pinschewer D. D., Perez M., de la Torre J. C.. ( 2005;). Dual role of the lymphocytic choriomeningitis virus intergenic region in transcription termination and virus propagation. . J Virol 79:, 4519–4526. [CrossRef][PubMed]
    [Google Scholar]
  69. Popkin D. L., Teijaro J. R., Lee A. M., Lewicki H., Emonet S., de la Torre J. C., Oldstone M.. ( 2011;). Expanded potential for recombinant trisegmented lymphocytic choriomeningitis viruses: protein production, antibody production, and in vivo assessment of biological function of genes of interest. . J Virol 85:, 7928–7932. [CrossRef][PubMed]
    [Google Scholar]
  70. Quinlivan M., Zamarin D., García-Sastre A., Cullinane A., Chambers T., Palese P.. ( 2005;). Attenuation of equine influenza viruses through truncations of the NS1 protein. . J Virol 79:, 8431–8439. [CrossRef][PubMed]
    [Google Scholar]
  71. Rodrigo W. W., de la Torre J. C., Martínez-Sobrido L.. ( 2011;). Use of single-cycle infectious lymphocytic choriomeningitis virus to study hemorrhagic fever arenaviruses. . J Virol 85:, 1684–1695. [CrossRef][PubMed]
    [Google Scholar]
  72. Sánchez A. B., de la Torre J. C.. ( 2006;). Rescue of the prototypic Arenavirus LCMV entirely from plasmid. . Virology 350:, 370–380. [CrossRef][PubMed]
    [Google Scholar]
  73. Sánchez A. B., Perez M., Cornu T., de la Torre J. C.. ( 2005;). RNA interference-mediated virus clearance from cells both acutely and chronically infected with the prototypic arenavirus lymphocytic choriomeningitis virus. . J Virol 79:, 11071–11081. [CrossRef][PubMed]
    [Google Scholar]
  74. Schickli J. H., Flandorfer A., Nakaya T., Martinez-Sobrido L., García-Sastre A., Palese P.. ( 2001;). Plasmid-only rescue of influenza A virus vaccine candidates. . Philos Trans R Soc Lond B Biol Sci 356:, 1965–1973. [CrossRef][PubMed]
    [Google Scholar]
  75. Schiff L. J.. ( 2005;). Review: production, characterization, and testing of banked mammalian cell substrates used to produce biological products. . In Vitro Cell Dev Biol Anim 41:, 65–70. [CrossRef][PubMed]
    [Google Scholar]
  76. Snell N.. ( 1988;). Ribavirin therapy for lassa fever. . Practitioner 232:, 432.[PubMed]
    [Google Scholar]
  77. Steidle S., Martínez-Sobrido L., Mordstein M., Lienenklaus S., García-Sastre A., Stäheli P., Kochs G.. ( 2010;). Glycine 184 in nonstructural protein NS1 determines the virulence of influenza A virus strain PR8 without affecting the host interferon response. . J Virol 84:, 12761–12770. [CrossRef][PubMed]
    [Google Scholar]
  78. Tannous B. A., Kim D. E., Fernandez J. L., Weissleder R., Breakefield X. O.. ( 2005;). Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. . Mol Ther 11:, 435–443. [CrossRef][PubMed]
    [Google Scholar]
  79. Vigil A., Park M. S., Martinez O., Chua M. A., Xiao S., Cros J. F., Martínez-Sobrido L., Woo S. L., García-Sastre A.. ( 2007;). Use of reverse genetics to enhance the oncolytic properties of Newcastle disease virus. . Cancer Res 67:, 8285–8292. [CrossRef][PubMed]
    [Google Scholar]
  80. von Messling V., Cattaneo R.. ( 2004;). Toward novel vaccines and therapies based on negative-strand RNA viruses. . Curr Top Microbiol Immunol 283:, 281–312.[PubMed]
    [Google Scholar]
  81. Wang J., Danzy S., Kumar N., Ly H., Liang Y.. ( 2012;). Biological roles and functional mechanisms of arenavirus Z protein in viral replication. . J Virol 86:, 9794–9801. [CrossRef][PubMed]
    [Google Scholar]
  82. Wertz G. W., Whelan S., LeGrone A., Ball L. A.. ( 1994;). Extent of terminal complementarity modulates the balance between transcription and replication of vesicular stomatitis virus RNA. . Proc Natl Acad Sci U S A 91:, 8587–8591. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.051102-0
Loading
/content/journal/jgv/10.1099/vir.0.051102-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error