1887

Abstract

The foot-and-mouth disease virus (FMDV) capsid protein precursor (P1-2A) is processed by the virus-encoded 3C protease (3C) to produce VP0, VP3, VP1 and 2A. Within the virus-encoded polyprotein, the P1-2A and 3C can be expected to be produced at equivalent concentrations. However, using transient-expression assays, within mammalian cells, it is possible to modify the relative amounts of the substrate and protease. It has now been shown that optimal production of the processed capsid proteins from P1-2A is achieved with reduced levels of 3C expression, relative to the P1-2A, compared with that achieved with a single P1-2A-3C polyprotein. Expression of the FMDV 3C is poorly tolerated by mammalian cells and higher levels of the 3C greatly inhibit protein expression. In addition, it is demonstrated that both the intact P1-2A precursor and the processed capsid proteins can be efficiently detected by FMDV antigen detection assays. Furthermore, the P1-2A and the processed forms each bind to the integrin αβ, the major FMDV receptor. These results contribute to the development of systems which efficiently express the components of empty capsid particles and may represent the basis for safer production of diagnostic reagents and improved vaccines against foot-and-mouth disease.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.050492-0
2013-06-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/6/1249.html?itemId=/content/journal/jgv/10.1099/vir.0.050492-0&mimeType=html&fmt=ahah

References

  1. Abrams C. C., King A. M., Belsham G. J.. ( 1995;). Assembly of foot-and-mouth disease virus empty capsids synthesized by a vaccinia virus expression system. . J Gen Virol 76:, 3089–3098. [CrossRef][PubMed]
    [Google Scholar]
  2. Acharya R., Fry E., Stuart D., Fox G., Rowlands D., Brown F.. ( 1989;). The three-dimensional structure of foot-and-mouth disease virus at 2.9 A resolution. . Nature 337:, 709–716. [CrossRef][PubMed]
    [Google Scholar]
  3. Alexandersen S., Zhang Z., Donaldson A. I., Garland A. J.. ( 2003;). The pathogenesis and diagnosis of foot-and-mouth disease. . J Comp Pathol 129:, 1–36. [CrossRef][PubMed]
    [Google Scholar]
  4. Armer H., Moffat K., Wileman T., Belsham G. J., Jackson T., Duprex W. P., Ryan M., Monaghan P.. ( 2008;). Foot-and-mouth disease virus, but not bovine enterovirus, targets the host cell cytoskeleton via the nonstructural protein 3Cpro. . J Virol 82:, 10556–10566. [CrossRef][PubMed]
    [Google Scholar]
  5. Belsham G. J.. ( 2005;). Translation and replication of FMDV RNA. . Curr Top Microbiol Immunol 288:, 43–70. [CrossRef][PubMed]
    [Google Scholar]
  6. Belsham G. J., McInerney G. M., Ross-Smith N.. ( 2000;). Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells. . J Virol 74:, 272–280. [CrossRef][PubMed]
    [Google Scholar]
  7. Belsham G. J., Nielsen I., Normann P., Royall E., Roberts L. O.. ( 2008;). Monocistronic mRNAs containing defective hepatitis C virus-like picornavirus internal ribosome entry site elements in their 5′ untranslated regions are efficiently translated in cells by a cap-dependent mechanism. . RNA 14:, 1671–1680. [CrossRef][PubMed]
    [Google Scholar]
  8. Bøtner A., Kakker N. K., Barbezange C., Berryman S., Jackson T., Belsham G. J.. ( 2011;). Capsid proteins from field strains of foot-and-mouth disease virus confer a pathogenic phenotype in cattle on an attenuated, cell-culture-adapted virus. . J Gen Virol 92:, 1141–1151. [CrossRef][PubMed]
    [Google Scholar]
  9. Curry S., Fry E., Blakemore W., Abu-Ghazaleh R., Jackson T., King A., Lea S., Newman J., Rowlands D., Stuart D.. ( 1996;). Perturbations in the surface structure of A22 Iraq foot-and-mouth disease virus accompanying coupled changes in host cell specificity and antigenicity. . Structure 4:, 135–145. [CrossRef][PubMed]
    [Google Scholar]
  10. Donnelly M. L., Luke G., Mehrotra A., Li X., Hughes L. E., Gani D., Ryan M. D.. ( 2001;). Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’. . J Gen Virol 82:, 1013–1025.[PubMed]
    [Google Scholar]
  11. Falk M. M., Grigera P. R., Bergmann I. E., Zibert A., Multhaup G., Beck E.. ( 1990;). Foot-and-mouth disease virus protease 3C induces specific proteolytic cleavage of host cell histone H3. . J Virol 64:, 748–756.[PubMed]
    [Google Scholar]
  12. Ferris N. P., Abrescia N. G., Stuart D. I., Jackson T., Burman A., King D. P., Paton D. J.. ( 2005;). Utility of recombinant integrin alpha v beta6 as a capture reagent in immunoassays for the diagnosis of foot-and-mouth disease. . J Virol Methods 127:, 69–79. [CrossRef][PubMed]
    [Google Scholar]
  13. Fry E. E., Stuart D. I., Rowlands D. J.. ( 2005;). The structure of foot-and-mouth disease virus. . Curr Top Microbiol Immunol 288:, 71–101. [CrossRef][PubMed]
    [Google Scholar]
  14. Fuerst T. R., Niles E. G., Studier F. W., Moss B.. ( 1986;). Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. . Proc Natl Acad Sci U S A 83:, 8122–8126. [CrossRef][PubMed]
    [Google Scholar]
  15. Grubman M. J., Baxt B.. ( 2004;). Foot-and-mouth disease. . Clin Microbiol Rev 17:, 465–493. [CrossRef][PubMed]
    [Google Scholar]
  16. Jackson T., Ellard F. M., Ghazaleh R. A., Brookes S. M., Blakemore W. E., Corteyn A. H., Stuart D. I., Newman J. W., King A. M.. ( 1996;). Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. . J Virol 70:, 5282–5287.[PubMed]
    [Google Scholar]
  17. Jackson T., Sheppard D., Denyer M., Blakemore W., King A. M.. ( 2000;). The epithelial integrin alphavbeta6 is a receptor for foot-and-mouth disease virus. . J Virol 74:, 4949–4956. [CrossRef][PubMed]
    [Google Scholar]
  18. Kitson J. D., McCahon D., Belsham G. J.. ( 1990;). Sequence analysis of monoclonal antibody resistant mutants of type O foot and mouth disease virus: evidence for the involvement of the three surface exposed capsid proteins in four antigenic sites. . Virology 179:, 26–34. [CrossRef][PubMed]
    [Google Scholar]
  19. Knowles N. J., Samuel A. R.. ( 2003;). Molecular epidemiology of foot-and-mouth disease virus. . Virus Res 91:, 65–80. [CrossRef][PubMed]
    [Google Scholar]
  20. Lea S., Hernández J., Blakemore W., Brocchi E., Curry S., Domingo E., Fry E., Abu-Ghazaleh R., King A.. & other authors ( 1994;). The structure and antigenicity of a type C foot-and-mouth disease virus. . Structure 2:, 123–139. [CrossRef][PubMed]
    [Google Scholar]
  21. Li W., Ross-Smith N., Proud C. G., Belsham G. J.. ( 2001;). Cleavage of translation initiation factor 4AI (eIF4AI) but not eIF4AII by foot-and-mouth disease virus 3C protease: identification of the eIF4AI cleavage site. . FEBS Lett 507:, 1–5. [CrossRef][PubMed]
    [Google Scholar]
  22. Lohse L., Jackson T., Bøtner A., Belsham G. J.. ( 2012;). Capsid coding sequences of foot-and-mouth disease viruses are determinants of pathogenicity in pigs. . Vet Res 43:, 46. [CrossRef][PubMed]
    [Google Scholar]
  23. OIE ( 2008;). Foot-and-mouth disease. Manual of standards for diagnostic test and vaccines for terrestrial animals. . http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.01.05_FMD.pdf
  24. Porta C., Xu X., Loureiro S., Paramasivam S., Ren J., Al-Khalil T., Burman A., Jackson T., Belsham G. J.. & other authors ( 2013;). Efficient production of foot-and-mouth disease virus empty capsids in insect cells following down regulation of 3C protease activity. . J Virol Methods 187:, 406–412. [CrossRef][PubMed]
    [Google Scholar]
  25. Roeder P. L., Le Blanc Smith P. M.. ( 1987;). Detection and typing of foot-and-mouth disease virus by enzyme-linked immunosorbent assay: a sensitive, rapid and reliable technique for primary diagnosis. . Res Vet Sci 43:, 225–232.[PubMed]
    [Google Scholar]
  26. Sáiz J. C., Cairó J., Medina M., Zuidema D., Abrams C., Belsham G. J., Domingo E., Vlak J. M.. ( 1994;). Unprocessed foot-and-mouth disease virus capsid precursor displays discontinuous epitopes involved in viral neutralization. . J Virol 68:, 4557–4564.[PubMed]
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  28. Strong R., Belsham G. J.. ( 2004;). Sequential modification of translation initiation factor eIF4GI by two different foot-and-mouth disease virus proteases within infected baby hamster kidney cells: identification of the 3Cpro cleavage site. . J Gen Virol 85:, 2953–2962. [CrossRef][PubMed]
    [Google Scholar]
  29. Sweeney T. R., Roqué-Rosell N., Birtley J. R., Leatherbarrow R. J., Curry S.. ( 2007;). Structural and mutagenic analysis of foot-and-mouth disease virus 3C protease reveals the role of the beta-ribbon in proteolysis. . J Virol 81:, 115–124. [CrossRef][PubMed]
    [Google Scholar]
  30. Thomas A. A., Woortmeijer R. J., Puijk W., Barteling S. J.. ( 1988;). Antigenic sites on foot-and-mouth disease virus type A10. . J Virol 62:, 2782–2789.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.050492-0
Loading
/content/journal/jgv/10.1099/vir.0.050492-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error