1887

Abstract

Analysis of full-genome sequences was previously used to trace the origin and transmission pathways of foot-and-mouth disease virus (FMDV) outbreaks in the UK in 2001 and 2007. Interpretation of these data was sometimes at variance with conventional epidemiological tracing, and was also used to predict the presence of undisclosed infected premises that were later discovered during serological surveillance. Here we report the genome changes associated with sequential passage of a highly BHK-21-cell-adapted (heparan sulphate-binding) strain of FMDV arising from two independent transmission chains in cattle. virus replication rapidly selected for a wild-type variant with an amino acid substitution at VP3. Full-genome sequence analysis clearly demonstrated sequence divergence during parallel passage. The genetic diversity generated over the course of infection and the rate at which these changes became fixed and were transmitted between cattle occurred at a rate sufficient to enable reliable tracing of transmission pathways at the level of the individual animal. However, tracing of transmission pathways was only clear when sequences from epithelial lesions were compared. Sequences derived from oesophageal–pharyngeal scrapings were problematic to interpret, with a varying number of ambiguities suggestive of a more diverse virus population. These findings will help to correctly interpret full-genome sequence analyses to resolve transmission pathways within future FMDV epidemics.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.046029-0
2013-01-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/1/108.html?itemId=/content/journal/jgv/10.1099/vir.0.046029-0&mimeType=html&fmt=ahah

References

  1. Alexandersen S., Zhang Z., Donaldson A. I.. ( 2002;). Aspects of the persistence of foot-and-mouth disease virus in animals – the carrier problem. . Microbes Infect 4:, 1099–1110. [CrossRef][PubMed]
    [Google Scholar]
  2. Alexandersen S., Zhang Z., Donaldson A. I., Garland A. J. M.. ( 2003;). The pathogenesis and diagnosis of foot-and-mouth disease. . J Comp Pathol 129:, 1–36. [CrossRef][PubMed]
    [Google Scholar]
  3. Ayelet G., Mahapatra M., Gelaye E., Egziabher B. G., Rufeal T., Sahle M., Ferris N. P., Wadsworth J., Hutchings G. H., Knowles N. J.. ( 2009;). Genetic characterization of foot-and-mouth disease viruses, Ethiopia, 1981–2007. . Emerg Infect Dis 15:, 1409–1417. [CrossRef][PubMed]
    [Google Scholar]
  4. Belsham G. J.. ( 2005;). Translation and replication of FMDV RNA. . Curr Top Microbiol Immunol 288:, 43–70. [CrossRef][PubMed]
    [Google Scholar]
  5. Borca M. V., Pacheco J. M., Holinka L. G., Carrillo C., Hartwig E., Garriga D., Kramer E., Rodriguez L., Piccone M. E.. ( 2012;). Role of arginine-56 within the structural protein VP3 of foot-and-mouth disease virus (FMDV) O1 Campos in virus virulence. . Virology 422:, 37–45. [CrossRef][PubMed]
    [Google Scholar]
  6. Charleston B., Bankowski B. M., Gubbins S., Chase-Topping M. E., Schley D., Howey R., Barnett P. V., Gibson D., Juleff N. D., Woolhouse M. E.. ( 2011;). Relationship between clinical signs and transmission of an infectious disease and the implications for control. . Science 332:, 726–729. [CrossRef][PubMed]
    [Google Scholar]
  7. Clement M., Posada D., Crandall K. A.. ( 2000;). tcs: a computer program to estimate gene genealogies. . Mol Ecol 9:, 1657–1659. [CrossRef][PubMed]
    [Google Scholar]
  8. Cottam E. M., Haydon D. T., Paton D. J., Gloster J., Wilesmith J. W., Ferris N. P., Hutchings G. H., King D. P.. ( 2006;). Molecular epidemiology of the foot-and-mouth disease virus outbreak in the United Kingdom in 2001. . J Virol 80:, 11274–11282. [CrossRef][PubMed]
    [Google Scholar]
  9. Cottam E. M., Thébaud G., Wadsworth J., Gloster J., Mansley L., Paton D. J., King D. P., Haydon D. T.. ( 2008a;). Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth disease virus. . Proc Biol Sci 275:, 887–895. [CrossRef][PubMed]
    [Google Scholar]
  10. Cottam E. M., Wadsworth J., Shaw A. E., Rowlands R. J., Goatley L., Maan S., Maan N. S., Mertens P. P., Ebert K.. & other authors ( 2008b;). Transmission pathways of foot-and-mouth disease virus in the United Kingdom in 2007. . PLoS Pathog 4:, e1000050. [CrossRef][PubMed]
    [Google Scholar]
  11. Domingo E., Ruiz-Jarabo C. M., Sierra S., Arias A., Pariente N., Baranowski E., Escarmis C.. ( 2001;). Emergence and selection of RNA virus variants: memory and extinction. . Virus Res 82:, 39–44. [CrossRef][PubMed]
    [Google Scholar]
  12. Domingo E., Escarmís C., Baranowski E., Ruiz-Jarabo C. M., Carrillo E., Núñez J. I., Sobrino F.. ( 2003;). Evolution of foot-and-mouth disease virus. . Virus Res 91:, 47–63. [CrossRef][PubMed]
    [Google Scholar]
  13. Drake J. W., Holland J. J.. ( 1999;). Mutation rates among RNA viruses. . Proc Natl Acad Sci U S A 96:, 13910–13913. [CrossRef][PubMed]
    [Google Scholar]
  14. Duffy S., Shackelton L. A., Holmes E. C.. ( 2008;). Rates of evolutionary change in viruses: patterns and determinants. . Nat Rev Genet 9:, 267–276. [CrossRef][PubMed]
    [Google Scholar]
  15. Fry E. E., Lea S. M., Jackson T., Newman J. W., Ellard F. M., Blakemore W. E., Abu-Ghazaleh R., Samuel A., King A. M., Stuart D. I.. ( 1999;). The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex. . EMBO J 18:, 543–554. [CrossRef][PubMed]
    [Google Scholar]
  16. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  17. Haydon D. T., Samuel A. R., Knowles N. J.. ( 2001;). The generation and persistence of genetic variation in foot-and-mouth disease virus. . Prev Vet Med 51:, 111–124. [CrossRef][PubMed]
    [Google Scholar]
  18. Henderson W. M.. ( 1952;). A comparison of different routes of inoculation of cattle for detection of the virus of foot-and-mouth disease. . J Hyg (Lond) 50:, 182–194. [CrossRef][PubMed]
    [Google Scholar]
  19. Jackson T., Ellard F. M., Ghazaleh R. A., Brookes S. M., Blakemore W. E., Corteyn A. H., Stuart D. I., Newman J. W., King A. M.. ( 1996;). Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. . J Virol 70:, 5282–5287.[PubMed]
    [Google Scholar]
  20. Jackson T., Sheppard D., Denyer M., Blakemore W., King A. M.. ( 2000;). The epithelial integrin αvβ6 is a receptor for foot-and-mouth disease virus. . J Virol 74:, 4949–4956. [CrossRef][PubMed]
    [Google Scholar]
  21. Juleff N., Windsor M., Lefevre E. A., Gubbins S., Hamblin P., Reid E., McLaughlin K., Beverley P. C., Morrison I. W., Charleston B.. ( 2009;). Foot-and-mouth disease virus can induce a specific and rapid CD4+ T-cell-independent neutralizing and isotype class-switched antibody response in naïve cattle. . J Virol 83:, 3626–3636. [CrossRef][PubMed]
    [Google Scholar]
  22. König G. A., Cottam E. M., Upadhyaya S., Gloster J., Mansley L. M., Haydon D. T., King D. P.. ( 2009;). Sequence data and evidence of possible airborne spread in the 2001 foot-and-mouth disease epidemic in the UK. . Vet Rec 165:, 410–412. [CrossRef][PubMed]
    [Google Scholar]
  23. Perry B. D., Rich K. M.. ( 2007;). Poverty impacts of foot-and-mouth disease and the poverty reduction implications of its control. . Vet Rec 160:, 238–241. [CrossRef][PubMed]
    [Google Scholar]
  24. Reid S. M., Forsyth M. A., Hutchings G. H., Ferris N. P.. ( 1998;). Comparison of reverse transcription polymerase chain reaction, enzyme linked immunosorbent assay and virus isolation for the routine diagnosis of foot-and-mouth disease. . J Virol Methods 70:, 213–217. [CrossRef][PubMed]
    [Google Scholar]
  25. Rozas J., Sánchez-DelBarrio J. C., Messeguer X., Rozas R.. ( 2003;). DnaSP, DNA polymorphism analyses by the coalescent and other methods. . Bioinformatics 19:, 2496–2497. [CrossRef][PubMed]
    [Google Scholar]
  26. Rueckert R. R., Wimmer E.. ( 1984;). Systematic nomenclature of picornavirus proteins. . J Virol 50:, 957–959.[PubMed]
    [Google Scholar]
  27. Sa-Carvalho D., Rieder E., Baxt B., Rodarte R., Tanuri A., Mason P. W.. ( 1997;). Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. . J Virol 71:, 5115–5123.[PubMed]
    [Google Scholar]
  28. Schley D., Knowles N. J., Gubbins S., Gloster J., Burgin L., Paton D. J.. ( 2008;). Probable route of infection for the second UK 2007 foot-and-mouth disease cluster. . Vet Rec 163:, 270–271. [CrossRef][PubMed]
    [Google Scholar]
  29. Valarcher J. F., Knowles N. J., Zakharov V., Scherbakov A., Zhang Z., Shang Y. J., Liu Z. X., Liu X. T., Sanyal A.. & other authors ( 2009;). Multiple origins of foot-and-mouth disease virus serotype Asia 1 outbreaks, 2003–2007. . Emerg Infect Dis 15:, 1046–1051. [CrossRef][PubMed]
    [Google Scholar]
  30. Wright C. F., Morelli M. J., Thébaud G., Knowles N. J., Herzyk P., Paton D. J., Haydon D. T., King D. P.. ( 2011;). Beyond the consensus: dissecting within-host viral population diversity of foot-and-mouth disease virus by using next-generation genome sequencing. . J Virol 85:, 2266–2275. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.046029-0
Loading
/content/journal/jgv/10.1099/vir.0.046029-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error