- Volume 94, Issue 1, 2013
Volume 94, Issue 1, 2013
- Review
-
-
-
C-terminal tail of human immunodeficiency virus gp41: functionally rich and structurally enigmatic
More LessThe human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) pandemic is amongst the most important current worldwide public health threats. While much research has been focused on AIDS vaccines that target the surface viral envelope (Env) protein, including gp120 and the gp41 ectodomain, the C-terminal tail (CTT) of gp41 has received relatively little attention. Despite early studies highlighting the immunogenicity of a particular CTT sequence, the CTT has been classically portrayed as a type I membrane protein limited to functioning in Env trafficking and virion incorporation. Recent studies demonstrate, however, that the Env CTT has other important functions. The CTT has been shown to additionally modulate Env ectodomain structure on the cell and virion surface, affect Env reactivity and viral sensitivity to conformation-dependent neutralizing antibodies, and alter cell–cell and virus–cell fusogenicity of Env. This review provides an overview of the Env structure and function with a particular emphasis on the CTT and recent studies that highlight its functionally rich nature.
-
-
- Animal
-
- RNA viruses
-
-
Human immunodeficiency virus type 1 gp120 envelope characteristics associated with disease progression differ in family members infected with genetically similar viruses
The human immunodeficiency virus type 1 (HIV-1) envelope protein provides the primary contact between the virus and host, and is the main target of the adaptive humoral immune response. The length of gp120 variable loops and the number of N-linked glycosylation events are key determinants for virus infectivity and immune escape, while the V3 loop overall positive charge is known to affect co-receptor tropism. We selected two families in which both parents and two children had been infected with HIV-1 for nearly 10 years, but who demonstrated variable parameters of disease progression. We analysed the gp120 envelope sequence and compared individuals that progressed to those that did not in order to decipher evolutionary alterations that are associated with disease progression when individuals are infected with genetically related virus strains. The analysis of the V3-positive charge demonstrated an association between higher V3-positive charges with disease progression. The ratio between the amino acid length and the number of potential N-linked glycosylation sites was also shown to be associated with disease progression with the healthier family members having a lower ratio. In conclusion in individuals initially infected with genetically linked virus strains the V3-positive charges and N-linked glycosylation are associated with HIV-1 disease progression and follow varied evolutionary paths for individuals with varied disease progression.
-
-
-
Genetic and antigenic characteristics of H4 subtype avian influenza viruses in Korea and their pathogenicity in quails, domestic ducks and mice
More LessIn Korea, a nationwide surveillance programme was implemented in 2003 to identify highly pathogenic avian influenza viruses (AIVs). AIVs belonging to one of the most common haemagglutinin subtypes, H4, were isolated from two domestic ducks and 52 wild birds between 2004 and 2010. These H4 AIVs could be further classified into three neuraminidase subtypes: H4N6 (94.4 %), H4N2 (3.7 %) and H4N3 (1.9 %). Phylogenetic analysis revealed that the H4 AIVs had a variety of genetic constellations, with at least nine different genotypes represented. The pathogenicity of these H4 viruses was assessed in quails, domestic ducks and mice. None of the H4 AIVs induced clinical signs in quails or domestic ducks. Viral shedding in quails was relatively high, and virus was recovered up to 5–7 days post-inoculation (p.i.) in oropharyngeal swabs, but the viruses replicated poorly in domestic ducks. Quails may act as an intermediate host in which AIVs are amplified and transmitted to other species. In mice, all of the AIVs were recovered efficiently at relatively high titres from the lungs up to 7 days p.i., demonstrating the potential for AIVs to infect mice directly without prior adaptation. None of the AIVs induced clinical signs nor was any lethal to infected mice. However, there was significant loss of body weight in mice infected with viruses of duck origin. It is suggested that the active surveillance of influenza viruses needs to be enhanced in domestic poultry as well as in wild birds, and that it should include assessment of pathogenicity in animal models.
-
-
-
The human cathelicidin LL-37 inhibits influenza A viruses through a mechanism distinct from that of surfactant protein D or defensins
LL-37, the only human cathelicidin, is a cationic antimicrobial peptide with antibacterial and antifungal activity. LL-37 is released from neutrophil granules and produced by epithelial cells. It has been implicated in host defence against influenza A virus (IAV) in recent studies. We now demonstrate dose-related neutralizing activity of LL-37 against several seasonal and mouse-adapted IAV strains. The ability of LL-37 to inhibit these IAV strains resulted mainly from direct effects on the virus, since pre-incubation of virus with LL-37 was needed for optimal inhibition. LL-37 bound high-density lipoprotein (HDL), and pre-incubation of LL-37 with human serum or HDL reduced its antiviral activity. LL-37 did not inhibit viral association with epithelial cells as assessed by quantitative RT-PCR or confocal microscopy. This finding contrasted with results obtained with surfactant protein D (SP-D). Unlike collectins or human neutrophil defensins (HNPs), LL-37 did not induce viral aggregation under electron microscopy. In the electron microscopy studies, LL-37 appeared to cause disruption of viral membranes. LL-37 had additive antiviral activity when combined with other innate inhibitors like SP-D, surfactant protein A and HNPs. Unlike HNPs, LL-37 did not bind SP-D significantly. These findings indicate that LL-37 contributes to host defence against IAV through a mechanism distinct from that of SP-D and HNPs.
-
-
-
Deletion of the C-terminal ESEV domain of NS1 does not affect the replication of a low-pathogenic avian influenza virus H7N1 in ducks and chickens
Highly pathogenic avian influenza (HPAI) H7N1 viruses caused a series of epizootics in Italy between 1999 and 2001. The emergence of these HPAI viruses coincided with the deletion of the six amino acids R225VESEV230 at the C terminus of NS1. In order to assess how the truncation of NS1 affected virus replication, we used reverse genetics to generate a wild-type low-pathogenic avian influenza (LPAI) H7N1 virus with a 230aa NS1 (H7N1230) and a mutant virus with a truncated NS1 (H7N1224). The 6aa truncation had no impact on virus replication in duck or chicken cells in vitro. The H7N1230 and H7N1224 viruses also replicated to similar levels and induced similar immune responses in ducks or chickens. No significant histological lesions were detected in infected ducks, regardless of the virus inoculated. However, in chickens, the H7N1230 virus induced a more severe interstitial pneumonia than did the H7N1224 virus. These findings indicate that the C-terminal extremity of NS1, including the PDZ-binding motif ESEV, is dispensable for efficient replication of an LPAI virus in ducks and chickens, even though it may increase virulence in chickens, as revealed by the intensity of the histological lesions.
-
-
-
ISG56/IFIT1 is primarily responsible for interferon-induced changes to patterns of parainfluenza virus type 5 transcription and protein synthesis
More LessInterferon (IFN) induces an antiviral state in cells that results in alterations of the patterns and levels of parainfluenza virus type 5 (PIV5) transcripts and proteins. This study reports that IFN-stimulated gene 56/IFN-induced protein with tetratricopeptide repeats 1 (ISG56/IFIT1) is primarily responsible for these effects of IFN. It was shown that treating cells with IFN after infection resulted in an increase in virus transcription but an overall decrease in virus protein synthesis. As there was no obvious decrease in the overall levels of cellular protein synthesis in infected cells treated with IFN, these results suggested that ISG56/IFIT1 selectively inhibits the translation of viral mRNAs. This conclusion was supported by in vitro translation studies. Previous work has shown that ISG56/IFIT1 can restrict the replication of viruses lacking a 2′-O-methyltransferase activity, an enzyme that methylates the 2′-hydroxyl group of ribose sugars in the 5′-cap structures of mRNA. However, the data in the current study strongly suggested that PIV5 mRNAs are methylated at the 2′-hydroxyl group and thus that ISG56/IFIT1 selectively inhibits the translation of PIV5 mRNA by some as yet unrecognized mechanism. It was also shown that ISG56/IFIT1 is primarily responsible for the IFN-induced inhibition of PIV5.
-
-
-
Detection of rhabdovirus viral RNA in oropharyngeal swabs and ectoparasites of Spanish bats
Rhabdoviruses infect a variety of hosts, including mammals, birds, reptiles, fish, insects and plants. As bats are the natural host for most members of the genus Lyssavirus, the specificity of the amplification methods used for active surveillance is usually restricted to lyssaviruses. However, the presence of other rhabdoviruses in bats has also been reported. In order to broaden the scope of such methods, a new RT-PCR, able to detect a diverse range of rhabdoviruses, was designed. The method detected 81 of 86 different rhabdoviruses. In total, 1488 oropharyngeal bat swabs and 38 nycteribiid samples were analysed, and 17 unique rhabdovirus-related sequences were detected. Phylogenetic analysis suggested that those sequences detected in bats did not constitute a monophyletic group, even when originating from the same bat species. However, all of the sequences detected in nycteribiids and one sequence obtained from a bat did constitute a monophyletic group with Drosophila melanogaster sigma rhabdovirus.
-
-
-
Eight novel hepatitis C virus genomes reveal the changing taxonomic structure of genotype 6
Analysis of partial hepatitis C virus sequences has revealed many novel genotype 6 variants that cannot be unambiguously classified, which obscure the distinctiveness of pre-existing subtypes. To explore this uncertainty, we obtained genomes of 98.0–98.8 % full-length for eight such variants (KM35, QC273, TV257, TV476, TV533, L349, QC271 and DH027) and characterized them using phylogenetic analyses and per cent nucleotide similarities. The former four are closely related phylogenetically to subtype 6k, TV533 and L349 to subtype 6l, QC271 to subtypes 6i and 6j, and DH027 to subtypes 6m and 6n. The former six defined a high-level grouping that comprised subtypes 6k and 6l, plus related strains. The threshold between intra- and inter-subtype diversity in this group was indistinct. We propose that similar results would be seen elsewhere if more intermediate variants like QC271 and DH027 were sampled.
-
-
-
Single-nucleotide polymorphisms in GALNT8 are associated with the response to interferon therapy for chronic hepatitis C
New anti-hepatitis C virus (HCV) therapeutics developed recently are more effective and lead to improvements in sustained viral response. However, interferon (IFN) monotherapy is still used to a limited extent for fear of adverse effects. This study investigated host genetic factors affecting the IFN response in patients with chronic hepatitis C (CHC). Using a two-step design, a large-scale association screening including 1088 Japanese CHC patients treated with IFN was performed employing ~70 000 gene-based single-nucleotide polymorphisms (SNPs). Replication was tested in an independent Japanese cohort of 328 patients. Fine-mapping and functional analyses were also performed. Through two-step screening, it was found that rs2286580 in intron 6 of the gene encoding N-acetylgalactosaminyltransferase 8 (GALNT8) on chromosome 12 was significantly associated with a sustained viral response (combined P = 3.9×10−6, odds ratio 1.52, 95 % confidence interval 1.29–1.82). The association was replicated in an additional cohort of 328 Japanese patients. In subgroup analysis, GALNT8 variants were associated with treatment outcome independently of HCV genotype. By contrast, the outcome of pegylated IFN and ribavirin combined therapy was not affected by the SNP. Fine-mapping analysis revealed that the association peak was at rs10849138 in intron 6 of GALNT8. Allele-specific transcription analysis demonstrated that GALNT8 expression was upregulated by an unfavourable allele of the variant. A luciferase reporter assay demonstrated that overexpression of GALNT8 attenuated IFN-α-induced gene transcription via the IFN-stimulated response element. These results suggest that GALNT8 variants contribute to the response to IFN therapy against CHC, providing a new insight into antiviral mechanisms of IFN.
-
-
-
Characterization of a serine-to-asparagine substitution at position 123 in the Japanese encephalitis virus E protein
Amino acid position 123 in the E protein of Japanese encephalitis virus (JEV) determines viral growth properties and pathogenicity. The majority of JEV strains have a serine residue at this position (E123S); however, JEV with an asparagine residue (E123N) has also been isolated. To compare the growth properties and pathogenicity of E123S and E123N JEV, we produced recombinant JEV with a serine-to-asparagine substitution at position 123 (rJEV-Mie41-ES123N) in the E123S-type strain Mie/41/2002 background. The growth rate of rJEV-Mie41-ES123N was similar to that of Mie/41/2002 in mammalian and mosquito cell lines. Mouse challenge experiments showed that there was only a slight difference in neuroinvasiveness between the parent strain (Mie/41/2002) and rJEV-Mie41-ES123N. Thus, our results indicate that the Ser-to-Asn substitution in the JEV E protein has weak impact on viral growth properties in vitro or on pathogenicity in vivo.
-
-
-
CD4+ T-cell responses to foot-and-mouth disease virus in vaccinated cattle
We have performed a series of studies to investigate the role of CD4+ T-cells in the immune response to foot-and-mouth disease virus (FMDV) post-vaccination. Virus neutralizing antibody titres (VNT) in cattle vaccinated with killed FMD commercial vaccine were significantly reduced and class switching delayed as a consequence of rigorous in vivo CD4+ T-cell depletion. Further studies were performed to examine whether the magnitude of T-cell proliferative responses correlated with the antibody responses. FMD vaccination was found to induce T-cell proliferative responses, with CD4+ T-cells responding specifically to the FMDV antigen. In addition, gamma interferon (IFN-γ) was detected in the supernatant of FMDV antigen-stimulated PBMC and purified CD4+ T-cells from vaccinated cattle. Similarly, intracellular IFN-γ could be detected specifically in purified CD4+ T-cells after restimulation. It was not possible to correlate in vitro proliferative responses or IFN-γ production of PBMC with VNT, probably as a consequence of the induction of T-independent and T-dependent antibody responses and antigen non-specific T-cell responses. However, our studies demonstrate the importance of stimulating CD4+ T-cell responses for the induction of optimum antibody responses to FMD-killed vaccines.
-
-
-
Accumulation of nucleotide substitutions occurring during experimental transmission of foot-and-mouth disease virus
Analysis of full-genome sequences was previously used to trace the origin and transmission pathways of foot-and-mouth disease virus (FMDV) outbreaks in the UK in 2001 and 2007. Interpretation of these data was sometimes at variance with conventional epidemiological tracing, and was also used to predict the presence of undisclosed infected premises that were later discovered during serological surveillance. Here we report the genome changes associated with sequential passage of a highly BHK-21-cell-adapted (heparan sulphate-binding) strain of FMDV arising from two independent transmission chains in cattle. In vivo virus replication rapidly selected for a wild-type variant with an amino acid substitution at VP356. Full-genome sequence analysis clearly demonstrated sequence divergence during parallel passage. The genetic diversity generated over the course of infection and the rate at which these changes became fixed and were transmitted between cattle occurred at a rate sufficient to enable reliable tracing of transmission pathways at the level of the individual animal. However, tracing of transmission pathways was only clear when sequences from epithelial lesions were compared. Sequences derived from oesophageal–pharyngeal scrapings were problematic to interpret, with a varying number of ambiguities suggestive of a more diverse virus population. These findings will help to correctly interpret full-genome sequence analyses to resolve transmission pathways within future FMDV epidemics.
-
-
-
Genomic analysis of two novel human enterovirus C genotypes found in respiratory samples from Peru
We report the discovery of two enteroviruses detected in nasopharyngeal samples obtained from subjects with respiratory disease in Peru. Phylogenetic analysis indicated that both viruses belong to a clade within the species Human enterovirus C, which includes the recently characterized human enteroviruses 109 and 104. Members of this clade have undergone significant genomic rearrangement, as indicated by deletions in the hypervariable region of the 5′ UTR and the VP1 protein, as well as recombination within the non-structural genes. Our findings and review of published sequences suggests that several novel human enterovirus C serotypes are currently circulating worldwide.
-
-
-
Whole-genome analysis of two bovine rotavirus C strains: Shintoku and Toyama
More LessRotavirus C (RVC) has been detected frequently in epidemic cases and/or outbreaks of diarrhoea in humans and animals worldwide. Because it is difficult to cultivate RVCs serially in cell culture, the sequence data available for RVCs are limited, despite their potential economical and epidemiological impact. Although whole-genome sequences of one porcine RVC and seven human RVC strains have been analysed, this has not yet been done for a bovine RVC strain. In the present study, we first determined the nucleotide sequences for five as-yet underresearched genes, including the NSP4 gene, from a cultivable bovine RVC, the Shintoku strain, identified in Hokkaido Prefecture, Japan, in 1991. In addition, we elucidated the ORF sequences of all segments from another bovine RVC, the Toyama strain, detected in Toyama Prefecture, Japan, in 2010, in order to investigate genetic divergence among bovine RVCs. Comparison of segmental nucleotide and deduced amino acid sequences among RVCs indicates high identity among bovine RVCs and low identity between human and porcine RVCs. Phylogenetic analysis of each gene showed that the two bovine RVCs belong to a cluster distinct from human and porcine RVCs. These data demonstrate that RVCs can be classified into different genotypes according to host species. Moreover, RVC NSP1, NSP2 and VP1 amino acid sequences contain a unique motif that is highly conserved among rotavirus A (RVA) strains and, hence, several proteins from bovine RVCs are suggested to play important roles that are similar to those of RVAs.
-
-
-
Identification of an avian group A rotavirus containing a novel VP4 gene with a close relationship to those of mammalian rotaviruses
More LessGroup A rotaviruses (RVAs) are an important cause of diarrhoeal illness in humans, as well as in mammalian and avian animal species. Previous sequence analyses indicated that avian RVAs are related only distantly to mammalian RVAs. Here, the complete genomes of RVA strain 03V0002E10 from turkey (Meleagris gallopavo) and RVA strain 10V0112H5 from pheasant (Phasianus colchicus) were analysed using a combination of 454 deep sequencing and Sanger sequencing technologies. An adenine-rich insertion similar to that found in the chicken RVA strain 02V0002G3, but considerably shorter, was found in the 3′ NCR of the NSP1 gene of the pheasant strain. Most genome segments of both strains were related closely to those of avian RVAs. The novel genotype N10 was assigned to the NSP2 gene of the pheasant RVA, which is related most closely to genotype N6 found in avian RVAs. However, this virus contains a VP4 gene of the novel genotype P[37], which is related most closely to RVAs from pigs, dogs and humans. This strain either may represent an avian/mammalian rotavirus reassortant, or it carries an unusual avian rotavirus VP4 gene, thereby broadening the potential genetic and antigenic variability among RVAs.
-
- DNA viruses
-
-
Overlapping structure of hepatitis B virus (HBV) genome and immune selection pressure are critical forces modulating HBV evolution
Valeria Cento, Carmen Mirabelli, Salvatore Dimonte, Romina Salpini, Yue Han, Pascale Trimoulet, Ada Bertoli, Valeria Micheli, Guido Gubertini, Giuseppina Cappiello, Alberto Spanò, Roberta Longo, Martina Bernassola, Francesco Mazzotta, Giuseppe Maria De Sanctis, Xin Xin Zhang, Jens Verheyen, Antonella D’Arminio Monforte, Francesca Ceccherini-Silberstein, Carlo Federico Perno and Valentina SvicherHow the overlap between the hepatitis B virus (HBV) reverse transcriptase (RT) and HBV S antigen (HBsAg) genes modulates the extent of HBV genetic variability is still an open question, and was investigated here. The rate of nucleotide conservation (≤1 % variability) followed an atypical pattern in the RT gene, due to an overlap between RT and HBsAg (69.9 % nucleotide conservation in the overlapping region vs 41.2 % in the non-overlapping region; P<0.001), with a consequently lower rate of synonymous substitution within the overlapping region [median(interquartile range)dS = 3.1(1.5–7.4) vs 20.1(10.6–30.0); P = 3.249×10−22]. The most conserved RT regions were located within the YMDD motif and the N-terminal parts of the palm and finger domains, critical for RT functionality. These regions also corresponded to highly conserved HBsAg domains that are critical for HBsAg secretion. Conversely, the genomic region encoding the HBsAg antigenic loop (where immune-escape mutations are localized) showed a sharp decrease in the extent of conservation (40.6 %), which was less pronounced in the setting of human immunodeficiency virus (HIV)-driven immune suppression (48.8 % in HIV–HBV co-infection vs 21.5 % in mono-infected patients; P = 0.020). In conclusion, the overlapping reading frame and the immune system appear to have shaped the patterns of RT and HBsAg genetic variability. Highly conserved regions in RT and HBsAg may deserve further attention as novel therapeutic targets.
-
-
-
Identification of novel recombinants of hepatitis B virus genotypes F and G in human immunodeficiency virus-positive patients from Argentina and Brazil
Hepatitis B virus (HBV) genotype G (HBV/G) infection is almost always detected along with a co-infecting HBV strain that can supply HBeAg, typically HBV/A2. In this study we describe, in two human immunodeficiency virus (HIV)-positive patients from Argentina and Brazil, the first report of HBV/G infection in Argentina and co-circulation of HBV/G, HBV/F and G/F recombinants in the American continent. HBV isolates carrying the 36 bp insertion of HBV/G were the most prevalent in both patients, with >99 % of colonies hybridizing to a probe specific for this insertion. Phylogenetic analyses of full-length genomes and precore/core fragments revealed that F4 and F1b were the co-infecting subgenotypes in the Brazilian and Argentinian patients, respectively. Bootscanning analysis provided evidence of recombination in several clones from both patients, with recombination breakpoints located mainly at the precore/core region. These data should encourage further investigations on the clinical implications of HBV/G recombinants in HBV/HIV co-infected patients.
-
-
-
Bos grunniens papillomavirus type 1: a novel deltapapillomavirus associated with fibropapilloma in yak
Papillomaviruses (PVs) have been widely identified among vertebrates, but have not yet been reported to infect yaks. We report, for the first time, a novel deltapapillomavirus that was associated with fibropapilloma in yak herds on the Qinghai–Tibetan Plateau. Six skin papilloma samples were collected and examined using histopathology, immunohistochemistry and PCR assays. The samples were identified as fibropapilloma and were found to contain PV antigens. Sequencing of diagnostic PCR products and the full-length genome revealed that all samples were infected with the same PV type. The whole virus genome was 7946 bp in length and possessed the common PV genomic organization. The virus was identified as a novel PV type and designated Bos grunniens papillomavirus type 1 (BgPV-1) based on the nucleotide sequence alignment of the L1 ORF. It is classified in the Delta-4 species of the genus Deltapapillomavirus based on phylogenetic analysis of the L1 ORF. Identification of this novel PV type provides further information about the pathology, development of diagnostic methods and evolutionary studies of the family Papillomaviridae.
-
-
-
Reduction of polyhedrin mRNA and protein expression levels in Sf9 and Hi5 cell lines, but not in Sf21 cells, infected with Autographa californica multiple nucleopolyhedrovirus fp25k mutants
More LessDuring cell infection, the fp25k gene of baculoviruses frequently mutates, producing the few polyhedra (FP) per cell phenotype with reduced polyhedrin (polh) expression levels compared with wild-type baculoviruses. Here we report that the fp25k gene of the model baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), contains two hypermutable seven-adenine (A7) mononucleotide repeats (MNRs) that were mutated to A8 MNRs and a TTAA site that had host DNA insertions, producing fp25k mutants during Sf21 cell infection. The FP phenotype in Sf9 and Hi5 cells was more pronounced than in Sf21 cells. AcMNPV fp25k mutants produced similar levels of polyhedra or enhanced GFP, which were both under the control of the AcMNPV polh promoter for expression, in Sf21 cells but lower levels in Sf9 and Hi5 cells compared with AcMNPV with an intact fp25k gene. This correlated with the polh mRNA levels detected in each cell line. The majority of Sf21 cells infected with fp25 mutants showed high polh promoter-mediated GFP expression levels. Two cell lines subcloned from Sf21 cells that were infected with fp25k mutants showed different GFP expression levels. Furthermore, a small proportion of Hi5 cells infected with fp25k mutants showed higher production of polyhedra and GFP expression than the rest, and the latter was not correlated with increased m.o.i. Therefore, these data suggest that AcMNPV polh promoter-mediated gene expression activities differ in the three cell lines and are influenced by different cells within the cell line.
-
-
-
Cell-dependent production of polyhedra and virion occlusion of Autographa californica multiple nucleopolyhedrovirus fp25k mutants in vitro and in vivo
Members of the family Baculoviridae are insect-specific dsDNA viruses that have been used for biological control of insect pests in agriculture and forestry, as well as in research and pharmaceutical protein expression in insect cells and larvae. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the type species of the family Baculoviridae. During infection of AcMNPV in permissive cells, fp25k mutants are positively selected, leading to the formation of the few polyhedra (FP) phenotype with reduced yield of polyhedra and reduced virion occlusion efficiency, which leads to decreased oral infectivity for insects. Here we report that polyhedra of AcMNPV fp25k mutants produced from different insect cell lines and insects have differences in larval per os infectivity, and that these variations are due to different virion occlusion efficiencies in these cell lines and insects. Polyhedra of AcMNPV fp25k mutants produced from Sf cells (Sf21 and Sf9, derived from Spodoptera frugiperda) and S. frugiperda larvae had poorer virion occlusion efficiency than those from Hi5 cells (derived from Trichoplusia ni) and T. ni larvae, based on immunoblots, DNA isolation and larval oral infection analysis. AcMNPV fp25k mutants formed clusters of FP and many polyhedra (MP) in the fat body cells of both T. ni and S. frugiperda larvae. Transmission electron microscopy revealed that the nature of virion occlusion of AcMNPV fp25k mutants was dependent on the different cells of the T. ni fat body tissue. Taken together, these results indicate that the FP phenotype and virion occlusion efficiency of fp25k mutants are influenced by the host insect cells.
-
Volumes and issues
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)