1887

Abstract

Herpes simplex virus type 1 (HSV-1) triplex is a complex of three protein subunits, consisting of two copies of VP23 and one copy of VP19C. Here, we identified a non-classical NLS of VP19C between aa 50 and 61, and the nuclear import of VP19C was mediated by RanGTP and importin β1-, but not importin α5-, dependent pathway. Additionally, recombinant virus harbouring this NLS mutation (NLSm) replicates less efficiently as wild-type. These data strongly suggested that the nuclear import of VP19C is required for efficient HSV-1 production.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.042697-0
2012-09-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/9/1869.html?itemId=/content/journal/jgv/10.1099/vir.0.042697-0&mimeType=html&fmt=ahah

References

  1. Adamson W. E., McNab D., Preston V. G., Rixon F. J.. ( 2006;). Mutational analysis of the herpes simplex virus triplex protein VP19C. . J Virol 80:, 1537–1548. [CrossRef][PubMed]
    [Google Scholar]
  2. Cai M., Wang S., Xing J., Zheng C.. ( 2011;). Characterization of the nuclear import and export signals, and subcellular transport mechanism of varicella-zoster virus ORF9. . J Gen Virol 92:, 621–626. [CrossRef][PubMed]
    [Google Scholar]
  3. Cai M., Wang S., Long J., Zheng C.. ( 2012;). Probing of the nuclear import and export signals and subcellular transport mechanism of varicella-zoster virus tegument protein open reading frame 10. . Med Microbiol Immunol (Berl) 201:, 103–111. [CrossRef][PubMed]
    [Google Scholar]
  4. Chowdhury S. I., Batterson W.. ( 1994;). Transinhibition of herpes simplex virus replication by an inducible cell-resident gene encoding a dysfunctional VP19c capsid protein. . Virus Res 33:, 67–87. [CrossRef][PubMed]
    [Google Scholar]
  5. Guo H., Mao R., Block T. M., Guo J. T.. ( 2010;). Production and function of the cytoplasmic deproteinized relaxed circular DNA of hepadnaviruses. . J Virol 84:, 387–396. [CrossRef][PubMed]
    [Google Scholar]
  6. Jarosinski K., Kattenhorn L., Kaufer B., Ploegh H., Osterrieder N.. ( 2007;). A herpesvirus ubiquitin-specific protease is critical for efficient T cell lymphoma formation. . Proc Natl Acad Sci U S A 104:, 20025–20030. [CrossRef][PubMed]
    [Google Scholar]
  7. Kim H. S., Huang E., Desai J., Sole M., Pryce E. N., Okoye M. E., Person S., Desai P. J.. ( 2011;). A domain in the herpes simplex virus 1 triplex protein VP23 is essential for closure of capsid shells into icosahedral structures. . J Virol 85:, 12698–12707. [CrossRef][PubMed]
    [Google Scholar]
  8. Lange A., Mills R. E., Lange C. J., Stewart M., Devine S. E., Corbett A. H.. ( 2007;). Classical nuclear localization signals: definition, function, and interaction with importin alpha. . J Biol Chem 282:, 5101–5105. [CrossRef][PubMed]
    [Google Scholar]
  9. Li X., Zhu F.. ( 2009;). Identification of the nuclear export and adjacent nuclear localization signals for ORF45 of Kaposi’s sarcoma-associated herpesvirus. . J Virol 83:, 2531–2539. [CrossRef][PubMed]
    [Google Scholar]
  10. Li M., Wang S., Cai M., Zheng C.. ( 2011a;). Identification of nuclear and nucleolar localization signals of pseudorabies virus (PRV) early protein UL54 reveals that its nuclear targeting is required for efficient production of PRV. . J Virol 85:, 10239–10251. [CrossRef][PubMed]
    [Google Scholar]
  11. Li Y., Wang S., Zhu H., Zheng C.. ( 2011b;). Cloning of the herpes simplex virus type 1 genome as a novel luciferase-tagged infectious bacterial artificial chromosome. . Arch Virol 156:, 2267–2272. [CrossRef][PubMed]
    [Google Scholar]
  12. Miyamoto Y., Hieda M., Harreman M. T., Fukumoto M., Saiwaki T., Hodel A. E., Corbett A. H., Yoneda Y.. ( 2002;). Importin alpha can migrate into the nucleus in an importin beta- and Ran-independent manner. . EMBO J 21:, 5833–5842. [CrossRef][PubMed]
    [Google Scholar]
  13. Moore M. S., Blobel G.. ( 1993;). The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. . Nature 365:, 661–663. [CrossRef][PubMed]
    [Google Scholar]
  14. Okoye M. E., Sexton G. L., Huang E., McCaffery J. M., Desai P.. ( 2006;). Functional analysis of the triplex proteins (VP19C and VP23) of herpes simplex virus type 1. . J Virol 80:, 929–940. [CrossRef][PubMed]
    [Google Scholar]
  15. Palacios I., Weis K., Klebe C., Mattaj I. W., Dingwall C.. ( 1996;). RAN/TC4 mutants identify a common requirement for snRNP and protein import into the nucleus. . J Cell Biol 133:, 485–494. [CrossRef][PubMed]
    [Google Scholar]
  16. Pemberton L. F., Paschal B. M.. ( 2005;). Mechanisms of receptor-mediated nuclear import and nuclear export. . Traffic 6:, 187–198. [CrossRef][PubMed]
    [Google Scholar]
  17. Person S., Desai P.. ( 1998;). Capsids are formed in a mutant virus blocked at the maturation site of the UL26 and UL26.5 open reading frames of herpes simplex virus type 1 but are not formed in a null mutant of UL38 (VP19C). . Virology 242:, 193–203. [CrossRef][PubMed]
    [Google Scholar]
  18. Reid S. P., Valmas C., Martinez O., Sanchez F. M., Basler C. F.. ( 2007;). Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin alpha proteins with activated STAT1. . J Virol 81:, 13469–13477. [CrossRef][PubMed]
    [Google Scholar]
  19. Rixon F. J., Addison C., McGregor A., Macnab S. J., Nicholson P., Preston V. G., Tatman J. D.. ( 1996;). Multiple interactions control the intracellular localization of the herpes simplex virus type 1 capsid proteins. . J Gen Virol 77:, 2251–2260. [CrossRef][PubMed]
    [Google Scholar]
  20. Saad A. S.. ( 2003;). Wavelets filtering for classification of very noisy electron microscopic single particles images–application on structure determination of VP5-VP19C recombinant. . BMC Struct Biol 3:, 9. [CrossRef][PubMed]
    [Google Scholar]
  21. Solé M., Perkins E. M., Frisancho A., Huang E., Desai P.. ( 2007;). The N terminus of the herpes simplex virus type 1 triplex protein, VP19C, cannot be detected on the surface of the capsid shell by using an antibody (hemagglutinin) epitope tag. . J Virol 81:, 8367–8370. [CrossRef][PubMed]
    [Google Scholar]
  22. Spencer J. V., Newcomb W. W., Thomsen D. R., Homa F. L., Brown J. C.. ( 1998;). Assembly of the herpes simplex virus capsid: preformed triplexes bind to the nascent capsid. . J Virol 72:, 3944–3951.[PubMed]
    [Google Scholar]
  23. Tanaka M., Kagawa H., Yamanashi Y., Sata T., Kawaguchi Y.. ( 2003;). Construction of an excisable bacterial artificial chromosome containing a full-length infectious clone of herpes simplex virus type 1: viruses reconstituted from the clone exhibit wild-type properties in vitro and in vivo. . J Virol 77:, 1382–1391. [CrossRef][PubMed]
    [Google Scholar]
  24. Tatman J. D., Preston V. G., Nicholson P., Elliott R. M., Rixon F. J.. ( 1994;). Assembly of herpes simplex virus type 1 capsids using a panel of recombinant baculoviruses. . J Gen Virol 75:, 1101–1113. [CrossRef][PubMed]
    [Google Scholar]
  25. Tischer B. K., von Einem J., Kaufer B., Osterrieder N.. ( 2006;). Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. . Biotechniques 40:, 191–197. [CrossRef][PubMed]
    [Google Scholar]
  26. Trus B. L., Booy F. P., Newcomb W. W., Brown J. C., Homa F. L., Thomsen D. R., Steven A. C.. ( 1996;). The herpes simplex virus procapsid: structure, conformational changes upon maturation, and roles of the triplex proteins VP19c and VP23 in assembly. . J Mol Biol 263:, 447–462. [CrossRef][PubMed]
    [Google Scholar]
  27. Wang J. P., Bowen G. N., Zhou S., Cerny A., Zacharia A., Knipe D. M., Finberg R. W., Kurt-Jones E. A.. ( 2012;). Role of specific innate immune responses in herpes simplex virus infection of the central nervous system. . J Virol 86:, 2273–2281. [CrossRef][PubMed]
    [Google Scholar]
  28. Wu F., Wang S., Xing J., Li M., Zheng C.. ( 2012;). Characterization of nuclear import and export signals determining the subcellular localization of WD repeat-containing protein 42A (WDR42A). . FEBS Lett 586:, 1079–1085. [CrossRef][PubMed]
    [Google Scholar]
  29. Xing J., Wu F., Pan W., Zheng C.. ( 2010;). Molecular anatomy of subcellular localization of HSV-1 tegument protein US11 in living cells. . Virus Res 153:, 71–81. [CrossRef][PubMed]
    [Google Scholar]
  30. Xing J., Wang S., Lin F., Pan W., Hu C. D., Zheng C.. ( 2011a;). Comprehensive characterization of interaction complexes of herpes simplex virus type 1 ICP22, UL3, UL4, and UL20.5. . J Virol 85:, 1881–1886. [CrossRef][PubMed]
    [Google Scholar]
  31. Xing J., Wang S., Li Y., Guo H., Zhao L., Pan W., Lin F., Zhu H., Wang L.. & other authors ( 2011b;). Characterization of the subcellular localization of herpes simplex virus type 1 proteins in living cells. . Med Microbiol Immunol (Berl) 200:, 61–68. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.042697-0
Loading
/content/journal/jgv/10.1099/vir.0.042697-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error