1887

Abstract

Recessive resistance to lettuce mosaic virus (LMV) is conferred in lettuce by the gene, encoding the eukaryotic translation initiation factor 4E (eIF4E). The C terminus of the viral cylindrical inclusion helicase (CI-Cter), together with the VPg, is involved directly in overcoming resistance. In this study, recombinant LMV VPg and CI-Cter proteins from wild-type or resistance-breaking isolates were expressed and purified from . The allelic forms of eIF4E from susceptible or resistant lettuce cultivars were produced similarly and these proteins were used in ELISA-based assays to demonstrate the binding of the various forms of LMV CI-Cter to both lettuce eIF4E and LMV VPg proteins. All combinations tested displayed significant and specific interactions, and the interaction between the C-terminal part of the LMV CI and eIF4E was confirmed in bimolecular fluorescence complementation assays. Higher interaction signals for both CI–eIF4E and CI–VPg were observed for LMV-E, indicating that the eIF4E interaction network involving CI and VPg appears to be stronger in the case of this resistance-breaking isolate. This could suggest the need for a minimal interaction threshold for infection success in resistant lettuce, but more precise measurement of the interaction parameters linking eIF4E, VPg and CI is needed in order to reinforce such a hypothesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.035881-0
2012-01-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/1/184.html?itemId=/content/journal/jgv/10.1099/vir.0.035881-0&mimeType=html&fmt=ahah

References

  1. Abdul-Razzak A., Guiraud T., Peypelut M., Walter J., Houvenaghel M. C., Candresse T., Le Gall O., German-Retana S.. ( 2009;). Involvement of the cylindrical inclusion (CI) protein in the overcoming of an eIF4E-mediated resistance against lettuce mosaic potyvirus. . Mol Plant Pathol 10:, 109–113. [CrossRef][PubMed]
    [Google Scholar]
  2. Ala-Poikela M., Goytia E., Haikonen T., Rajamäki M. L., Valkonen J. P.. ( 2011;). Helper component proteinase of the genus Potyvirus is an interaction partner of translation initiation factors eIF(iso)4E and eIF4E and contains a 4E binding motif. . J Virol 85:, 6784–6794. [CrossRef][PubMed]
    [Google Scholar]
  3. Arbatova J., Lehto K., Pehu E., Pehu T.. ( 1998;). Localization of the P1 protein of potato Y potyvirus in association with cytoplasmic inclusion bodies and in the cytoplasm of infected cells. . J Gen Virol 79:, 2319–2323.[PubMed]
    [Google Scholar]
  4. Arroyo R., Soto M. J., MartinezZapater J. M., Ponz, F.., ( 1996;). Impaired cell-to-cell movement of potato virus Y in pepper plants carrying the ya (pr21) resistance gene. . Mol Plant Microbe Interact 9:, 314–318. [CrossRef]
    [Google Scholar]
  5. Ayme V., Souche S., Caranta C., Jacquemond M., Chadœuf J., Palloix A., Moury B.. ( 2006;). Different mutations in the genome-linked protein VPg of Potato virus Y confer virulence on the pvr23 resistance in pepper. . Mol Plant Microbe Interact 19:, 557–563. [CrossRef][PubMed]
    [Google Scholar]
  6. Azimzadeh J., Nacry P., Christodoulidou A., Drevensek S., Camilleri C., Amiour N., Parcy F., Pastuglia M., Bouchez D.. ( 2008;). Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with centrin. . Plant Cell 20:, 2146–2159. [CrossRef][PubMed]
    [Google Scholar]
  7. Beauchemin C., Boutet N., Laliberté J. F.. ( 2007;). Visualization of the interaction between the precursors of VPg, the viral protein linked to the genome of Turnip mosaic virus, and the translation eukaryotic initiation factor iso 4E in planta. . J Virol 81:, 775–782. [CrossRef][PubMed]
    [Google Scholar]
  8. Bilgin D. D., Liu Y., Schiff M., Dinesh-Kumar S. P.. ( 2003;). P58IPK, a plant ortholog of double-stranded RNA-dependent protein kinase PKR inhibitor, functions in viral pathogenesis. . Dev Cell 4:, 651–661. [CrossRef][PubMed]
    [Google Scholar]
  9. Bracha-Drori K., Shichrur K., Katz A., Oliva M., Angelovici R., Yalovsky S., Ohad N.. ( 2004;). Detection of protein–protein interactions in plants using bimolecular fluorescence complementation. . Plant J 40:, 419–427. [CrossRef][PubMed]
    [Google Scholar]
  10. Carrington J. C., Jensen P. E., Schaad M. C.. ( 1998;). Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. . Plant J 14:, 393–400. [CrossRef][PubMed]
    [Google Scholar]
  11. Charron C., Nicolaï M., Gallois J. L., Robaglia C., Moury B. T., Palloix A., Caranta C.. ( 2008;). Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg. . Plant J 54:, 56–68. [CrossRef][PubMed]
    [Google Scholar]
  12. Cheng Y. Q., Liu Z. M., Xu J., Zhou T., Wang M., Chen Y. T., Li H. F., Fan Z. F.. ( 2008;). HC-Pro protein of sugar cane mosaic virus interacts specifically with maize ferredoxin-5 in vitro and in planta. . J Gen Virol 89:, 2046–2054. [CrossRef][PubMed]
    [Google Scholar]
  13. Chroboczek J., Hébrard E., Mäkinen K., Michon T., Rantalainen K.. ( 2012;). Intrinsic disorder in genome-linked viral proteins VPgs of potyviruses. . In Flexible Viruses: Structural Disorder in Viral Proteins. Edited by Uversky V. N., Longhi S... Chichester, UK:: Wiley; (in press).
    [Google Scholar]
  14. Dielen A. S., Sassaki F. T., Walter J., Michon T., Ménard G., Pagny G., Krause-Sakate R., Maia I. G., Badaoui S.. & other authors ( 2011;). The 20S proteasome α5 subunit of Arabidopsis thaliana carries an RNase activity and interacts in planta with the Lettuce mosaic potyvirus HcPro protein. . Mol Plant Pathol 12:, 137–150. [CrossRef][PubMed]
    [Google Scholar]
  15. Dufresne P. J., Thivierge K., Cotton S., Beauchemin C., Ide C., Ubalijoro E., Laliberté J. F., Fortin M. G.. ( 2008;). Heat shock 70 protein interaction with Turnip mosaic virus RNA-dependent RNA polymerase within virus-induced membrane vesicles. . Virology 374:, 217–227. [CrossRef][PubMed]
    [Google Scholar]
  16. Dunoyer P., Thomas C., Harrison S., Revers F., Maule A.. ( 2004;). A cysteine-rich plant protein potentiates Potyvirus movement through an interaction with the virus genome-linked protein VPg. . J Virol 78:, 2301–2309. [CrossRef][PubMed]
    [Google Scholar]
  17. Duprat A., Caranta C., Revers F., Menand B., Browning K. S., Robaglia C.. ( 2002;). The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. . Plant J 32:, 927–934. [CrossRef][PubMed]
    [Google Scholar]
  18. Edwardson J. R.. ( 1992;). Inclusion bodies. . Arch Virol Suppl 5:, 25–30. [CrossRef][PubMed]
    [Google Scholar]
  19. Feki S., Loukili M. J., Triki-Marrakchi R., Karimova G., Old I., Ounouna H., Nato A., Nato F., Guesdon J. L.. & other authors ( 2005;). Interaction between tobacco ribulose-1,5-biphosphate carboxylase/oxygenase large subunit (RubisCO-LSU) and the PVY coat protein (PVY-CP). . Eur J Plant Pathol 112:, 221–234. [CrossRef]
    [Google Scholar]
  20. Fernández A., Laín S., García J. A.. ( 1995;). RNA helicase activity of the plum pox potyvirus CI protein expressed in Escherichia coli. Mapping of an RNA binding domain. . Nucleic Acids Res 23:, 1327–1332. [CrossRef][PubMed]
    [Google Scholar]
  21. Fernández A., Guo H. S., Sáenz P., Simón-Buela L., Gómez de Cedrón M., García J. A.. ( 1997;). The motif V of plum pox potyvirus CI RNA helicase is involved in NTP hydrolysis and is essential for virus RNA replication. . Nucleic Acids Res 25:, 4474–4480. [CrossRef][PubMed]
    [Google Scholar]
  22. Gabrenaite-Verkhovskaya R., Andreev I. A., Kalinina N. O., Torrance L., Taliansky M. E., Mäkinen K.. ( 2008;). Cylindrical inclusion protein of potato virus A is associated with a subpopulation of particles isolated from infected plants. . J Gen Virol 89:, 829–838. [CrossRef][PubMed]
    [Google Scholar]
  23. Gao Z. H., Johansen E., Eyers S., Thomas C. L., Noel Ellis T. H., Maule A. J.. ( 2004;). The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. . Plant J 40:, 376–385. [CrossRef][PubMed]
    [Google Scholar]
  24. German-Retana S., Redondo E., Tavert-Roudet G., Le Gall O., Candresse T.. ( 2003;). Introduction of a NIa proteinase cleavage site between the reporter gene and HC-Pro only partially restores the biological properties of GUS- or GFP-tagged LMV. . Virus Res 98:, 151–162. [CrossRef][PubMed]
    [Google Scholar]
  25. German-Retana S., Walter J., Doublet B., Roudet-Tavert G., Nicaise V., Lecampion C., Houvenaghel M. C., Robaglia C., Michon T., Le Gall O.. ( 2008;). Mutational analysis of plant cap-binding protein eIF4E reveals key amino acids involved in biochemical functions and potyvirus infection. . J Virol 82:, 7601–7612. [CrossRef][PubMed]
    [Google Scholar]
  26. Gómez de Cedrón M., Osaba L., López L., García J. A.. ( 2006;). Genetic analysis of the function of the plum pox virus CI RNA helicase in virus movement. . Virus Res 116:, 136–145. [CrossRef][PubMed]
    [Google Scholar]
  27. Guo D. Y., Rajamäki M. L., Saarma M., Valkonen J. P. T.. ( 2001;). Towards a protein interaction map of potyviruses: protein interaction matrixes of two potyviruses based on the yeast two-hybrid system. . J Gen Virol 82:, 935–939.[PubMed]
    [Google Scholar]
  28. Huang T.-S., Wei T., Laliberté J.-F., Wang A.. ( 2010;). A host RNA helicase-like protein, AtRH8, interacts with the potyviral genome-linked protein, VPg, associates with the virus accumulation complex, and is essential for infection. . Plant Physiol 152:, 255–266. [CrossRef][PubMed]
    [Google Scholar]
  29. Jenner C. E., Sánchez F., Nettleship S. B., Foster G. D., Ponz F., Walsh J. A.. ( 2000;). The cylindrical inclusion gene of Turnip mosaic virus encodes a pathogenic determinant to the Brassica resistance gene TuRB01. . Mol Plant Microbe Interact 13:, 1102–1108. [CrossRef][PubMed]
    [Google Scholar]
  30. Jiménez I., López L., Alamillo J. M., Valli A., García J. A.. ( 2006;). Identification of a plum pox virus CI-interacting protein from chloroplast that has a negative effect in virus infection. . Mol Plant Microbe Interact 19:, 350–358. [CrossRef][PubMed]
    [Google Scholar]
  31. Jin Y. S., Ma D. Y., Dong J. L., Li D. F., Deng C. W., Jin J. C., Wang T.. ( 2007;). The HC-Pro protein of Potato virus Y interacts with NtMinD of tobacco. . Mol Plant Microbe Interact 20:, 1505–1511. [CrossRef][PubMed]
    [Google Scholar]
  32. Kang B. C., Yeam I., Frantz J. D., Murphy J. F., Jahn M. M.. ( 2005;). The pvr1 locus in Capsicum encodes a translation initiation factor eIF4E that interacts with Tobacco etch virus VPg. . Plant J 42:, 392–405. [CrossRef][PubMed]
    [Google Scholar]
  33. Khan M. A., Miyoshi H., Ray S., Natsuaki T., Suehiro N., Goss D. J.. ( 2006;). Interaction of genome-linked protein (VPg) of turnip mosaic virus with wheat germ translation initiation factors eIFiso4E and eIFiso4F. . J Biol Chem 281:, 28002–28010. [CrossRef][PubMed]
    [Google Scholar]
  34. Langenberg W. G.. ( 1993;). Structural proteins of three viruses in the Potyviridae adhere only to their homologous cylindrical inclusions in mixed infections. . J Struct Biol 110:, 188–195. [CrossRef][PubMed]
    [Google Scholar]
  35. Lellis A. D., Kasschau K. D., Whitham S. A., Carrington J. C.. ( 2002;). Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. . Curr Biol 12:, 1046–1051. [CrossRef][PubMed]
    [Google Scholar]
  36. López L., Urzainqui A., Domínguez E., García J. A.. ( 2001;). Identification of an N-terminal domain of the plum pox potyvirus CI RNA helicase involved in self-interaction in a yeast two-hybrid system. . J Gen Virol 82:, 677–686.[PubMed]
    [Google Scholar]
  37. McClintock K., Lamarre A., Parsons V., Laliberté J. F., Fortin M. G.. ( 1998;). Identification of a 37 kDa plant protein that interacts with the turnip mosaic potyvirus capsid protein using anti-idiotypic-antibodies. . Plant Mol Biol 37:, 197–204. [CrossRef][PubMed]
    [Google Scholar]
  38. Merits A., Guo D. Y., Saarma M.. ( 1998;). VPg, coat protein and five non-structural proteins of potato A potyvirus bind RNA in a sequence-unspecific manner. . J Gen Virol 79:, 3123–3127.[PubMed]
    [Google Scholar]
  39. Michon T., Estevez Y., Walter J., German-Retana S., Le Gall O.. ( 2006;). The potyviral virus genome-linked protein VPg forms a ternary complex with the eukaryotic initiation factors eIF4E and eIF4G and reduces eIF4E affinity for a mRNA cap analogue. . FEBS J 273:, 1312–1322. [CrossRef][PubMed]
    [Google Scholar]
  40. Nakahara K. S., Shimada R., Choi S. H., Yamamoto H., Shao J., Uyeda I.. ( 2010;). Involvement of the P1 cistron in overcoming eIF4E-mediated recessive resistance against Clover yellow vein virus in pea. . Mol Plant Microbe Interact 23:, 1460–1469. [CrossRef][PubMed]
    [Google Scholar]
  41. Nicaise V., German-Retana S., Sanjuán R., Dubrana M. P., Mazier M., Maisonneuve B., Candresse T., Caranta C., LeGall O.. ( 2003;). The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus Lettuce mosaic virus. . Plant Physiol 132:, 1272–1282. [CrossRef][PubMed]
    [Google Scholar]
  42. Nicaise V., Gallois J. L., Chafiai F., Allen L. M., Schurdi-Levraud V., Browning K. S., Candresse T., Caranta C., Le Gall O., German-Retana S.. ( 2007;). Coordinated and selective recruitment of eIF4E and eIF4G factors for potyvirus infection in Arabidopsis thaliana. . FEBS Lett 581:, 1041–1046. [CrossRef][PubMed]
    [Google Scholar]
  43. Piron F., Nicolaï M., Minoïa S., Piednoir E., Moretti A., Salgues A., Zamir D., Caranta C., Bendahmane A.. ( 2010;). An induced mutation in tomato eIF4E leads to immunity to two potyviruses. . PLoS One 5:, e11313. [CrossRef][PubMed]
    [Google Scholar]
  44. Robaglia C., Caranta C.. ( 2006;). Translation initiation factors: a weak link in plant RNA virus infection. . Trends Plant Sci 11:, 40–45. [CrossRef][PubMed]
    [Google Scholar]
  45. Roberts I. M., Wang D., Findlay K., Maule A. J.. ( 1998;). Ultrastructural and temporal observations of the potyvirus cylindrical inclusions (CIs) show that the CI protein acts transiently in aiding virus movement. . Virology 245:, 173–181. [CrossRef][PubMed]
    [Google Scholar]
  46. Rodríguez-Cerezo E., Ammar E. D., Pirone T. P., Shaw J. G.. ( 1993;). Association of the non-structural P3 viral protein with cylindrical inclusions in potyvirus-infected cells. . J Gen Virol 74:, 1945–1949. [CrossRef][PubMed]
    [Google Scholar]
  47. Rodríguez-Cerezo E., Findlay K., Shaw J. G., Lomonossoff G. P., Qiu S. G., Linstead P., Shanks M., Risco C.. ( 1997;). The coat and cylindrical inclusion proteins of a potyvirus are associated with connections between plant cells. . Virology 236:, 296–306. [CrossRef][PubMed]
    [Google Scholar]
  48. Roudet-Tavert G., Michon T., Walter J., Delaunay T., Redondo E., Le Gall O.. ( 2007;). Central domain of a potyvirus VPg is involved in the interaction with the host translation initiation factor eIF4E and the viral protein HcPro. . J Gen Virol 88:, 1029–1033. [CrossRef][PubMed]
    [Google Scholar]
  49. Shen W. T., Wang M. Q., Yan P., Gao L., Zhou P.. ( 2010;). Protein interaction matrix of papaya ringspot virus type P based on a yeast two-hybrid system. . Acta Virol 54:, 49–54. [CrossRef][PubMed]
    [Google Scholar]
  50. Shi Y., Chen J., Hong X., Chen J., Adams M. J.. ( 2007;). A potyvirus P1 protein interacts with the Rieske Fe/S protein of its host. . Mol Plant Pathol 8:, 785–790. [CrossRef][PubMed]
    [Google Scholar]
  51. Shukla D. D., Ward C. W., Brunt A. A.. ( 1994;). The Potyviridae. Wallingford, UK:: CAB International;.
    [Google Scholar]
  52. Torrance L., Andreev I. A., Gabrenaite-Verhovskaya R., Cowan G., Mäkinen K., Taliansky M. E.. ( 2006;). An unusual structure at one end of potato potyvirus particles. . J Mol Biol 357:, 1–8. [CrossRef][PubMed]
    [Google Scholar]
  53. Wei T., Zhang C., Hong J., Xiong R., Kasschau K. D., Zhou X., Carrington J. C., Wang A.. ( 2010;). Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. . PLoS Pathog 6:, e1000962. [CrossRef][PubMed]
    [Google Scholar]
  54. Yeam I., Cavatorta J. R., Ripoll D. R., Kang B. C., Jahn M. M.. ( 2007;). Functional dissection of naturally occurring amino acid substitutions in eIF4E that confers recessive potyvirus resistance in plants. . Plant Cell 19:, 2913–2928. [CrossRef][PubMed]
    [Google Scholar]
  55. Zhang C. Q., Hajimorad M. R., Eggenberger A. L., Tsang S., Whitham S. A., Hill J. H.. ( 2009;). Cytoplasmic inclusion cistron of Soybean mosaic virus serves as a virulence determinant on Rsv3-genotype soybean and a symptom determinant. . Virology 391:, 240–248. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.035881-0
Loading
/content/journal/jgv/10.1099/vir.0.035881-0
Loading

Data & Media loading...

Supplements

Supplementary figures 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error