1887

Abstract

Recessive resistance to lettuce mosaic virus (LMV) is conferred in lettuce by the gene, encoding the eukaryotic translation initiation factor 4E (eIF4E). The C terminus of the viral cylindrical inclusion helicase (CI-Cter), together with the VPg, is involved directly in overcoming resistance. In this study, recombinant LMV VPg and CI-Cter proteins from wild-type or resistance-breaking isolates were expressed and purified from . The allelic forms of eIF4E from susceptible or resistant lettuce cultivars were produced similarly and these proteins were used in ELISA-based assays to demonstrate the binding of the various forms of LMV CI-Cter to both lettuce eIF4E and LMV VPg proteins. All combinations tested displayed significant and specific interactions, and the interaction between the C-terminal part of the LMV CI and eIF4E was confirmed in bimolecular fluorescence complementation assays. Higher interaction signals for both CI–eIF4E and CI–VPg were observed for LMV-E, indicating that the eIF4E interaction network involving CI and VPg appears to be stronger in the case of this resistance-breaking isolate. This could suggest the need for a minimal interaction threshold for infection success in resistant lettuce, but more precise measurement of the interaction parameters linking eIF4E, VPg and CI is needed in order to reinforce such a hypothesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.035881-0
2012-01-01
2024-09-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/1/184.html?itemId=/content/journal/jgv/10.1099/vir.0.035881-0&mimeType=html&fmt=ahah

References

  1. Abdul-Razzak A., Guiraud T., Peypelut M., Walter J., Houvenaghel M. C., Candresse T., Le Gall O., German-Retana S. 2009; Involvement of the cylindrical inclusion (CI) protein in the overcoming of an eIF4E-mediated resistance against lettuce mosaic potyvirus. Mol Plant Pathol 10:109–113 [View Article][PubMed]
    [Google Scholar]
  2. Ala-Poikela M., Goytia E., Haikonen T., Rajamäki M. L., Valkonen J. P. 2011; Helper component proteinase of the genus Potyvirus is an interaction partner of translation initiation factors eIF(iso)4E and eIF4E and contains a 4E binding motif. J Virol 85:6784–6794 [View Article][PubMed]
    [Google Scholar]
  3. Arbatova J., Lehto K., Pehu E., Pehu T. 1998; Localization of the P1 protein of potato Y potyvirus in association with cytoplasmic inclusion bodies and in the cytoplasm of infected cells. J Gen Virol 79:2319–2323[PubMed]
    [Google Scholar]
  4. Arroyo R., Soto M. J., MartinezZapater J. M., Ponz, F.. 1996; Impaired cell-to-cell movement of potato virus Y in pepper plants carrying the ya (pr21) resistance gene. Mol Plant Microbe Interact 9:314–318 [View Article]
    [Google Scholar]
  5. Ayme V., Souche S., Caranta C., Jacquemond M., Chadœuf J., Palloix A., Moury B. 2006; Different mutations in the genome-linked protein VPg of Potato virus Y confer virulence on the pvr23 resistance in pepper. Mol Plant Microbe Interact 19:557–563 [View Article][PubMed]
    [Google Scholar]
  6. Azimzadeh J., Nacry P., Christodoulidou A., Drevensek S., Camilleri C., Amiour N., Parcy F., Pastuglia M., Bouchez D. 2008; Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with centrin. Plant Cell 20:2146–2159 [View Article][PubMed]
    [Google Scholar]
  7. Beauchemin C., Boutet N., Laliberté J. F. 2007; Visualization of the interaction between the precursors of VPg, the viral protein linked to the genome of Turnip mosaic virus, and the translation eukaryotic initiation factor iso 4E in planta. J Virol 81:775–782 [View Article][PubMed]
    [Google Scholar]
  8. Bilgin D. D., Liu Y., Schiff M., Dinesh-Kumar S. P. 2003; P58IPK, a plant ortholog of double-stranded RNA-dependent protein kinase PKR inhibitor, functions in viral pathogenesis. Dev Cell 4:651–661 [View Article][PubMed]
    [Google Scholar]
  9. Bracha-Drori K., Shichrur K., Katz A., Oliva M., Angelovici R., Yalovsky S., Ohad N. 2004; Detection of protein–protein interactions in plants using bimolecular fluorescence complementation. Plant J 40:419–427 [View Article][PubMed]
    [Google Scholar]
  10. Carrington J. C., Jensen P. E., Schaad M. C. 1998; Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. Plant J 14:393–400 [View Article][PubMed]
    [Google Scholar]
  11. Charron C., Nicolaï M., Gallois J. L., Robaglia C., Moury B. T., Palloix A., Caranta C. 2008; Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg. Plant J 54:56–68 [View Article][PubMed]
    [Google Scholar]
  12. Cheng Y. Q., Liu Z. M., Xu J., Zhou T., Wang M., Chen Y. T., Li H. F., Fan Z. F. 2008; HC-Pro protein of sugar cane mosaic virus interacts specifically with maize ferredoxin-5 in vitro and in planta. J Gen Virol 89:2046–2054 [View Article][PubMed]
    [Google Scholar]
  13. Chroboczek J., Hébrard E., Mäkinen K., Michon T., Rantalainen K. 2012; Intrinsic disorder in genome-linked viral proteins VPgs of potyviruses. In Flexible Viruses: Structural Disorder in Viral Proteins Edited by Uversky V. N., Longhi S. Chichester, UK: Wiley; in press
    [Google Scholar]
  14. Dielen A. S., Sassaki F. T., Walter J., Michon T., Ménard G., Pagny G., Krause-Sakate R., Maia I. G., Badaoui S.other authors 2011; The 20S proteasome α5 subunit of Arabidopsis thaliana carries an RNase activity and interacts in planta with the Lettuce mosaic potyvirus HcPro protein. Mol Plant Pathol 12:137–150 [View Article][PubMed]
    [Google Scholar]
  15. Dufresne P. J., Thivierge K., Cotton S., Beauchemin C., Ide C., Ubalijoro E., Laliberté J. F., Fortin M. G. 2008; Heat shock 70 protein interaction with Turnip mosaic virus RNA-dependent RNA polymerase within virus-induced membrane vesicles. Virology 374:217–227 [View Article][PubMed]
    [Google Scholar]
  16. Dunoyer P., Thomas C., Harrison S., Revers F., Maule A. 2004; A cysteine-rich plant protein potentiates Potyvirus movement through an interaction with the virus genome-linked protein VPg. J Virol 78:2301–2309 [View Article][PubMed]
    [Google Scholar]
  17. Duprat A., Caranta C., Revers F., Menand B., Browning K. S., Robaglia C. 2002; The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J 32:927–934 [View Article][PubMed]
    [Google Scholar]
  18. Edwardson J. R. 1992; Inclusion bodies. Arch Virol Suppl 5:25–30 [View Article][PubMed]
    [Google Scholar]
  19. Feki S., Loukili M. J., Triki-Marrakchi R., Karimova G., Old I., Ounouna H., Nato A., Nato F., Guesdon J. L.other authors 2005; Interaction between tobacco ribulose-1,5-biphosphate carboxylase/oxygenase large subunit (RubisCO-LSU) and the PVY coat protein (PVY-CP). Eur J Plant Pathol 112:221–234 [View Article]
    [Google Scholar]
  20. Fernández A., Laín S., García J. A. 1995; RNA helicase activity of the plum pox potyvirus CI protein expressed in Escherichia coli. Mapping of an RNA binding domain. Nucleic Acids Res 23:1327–1332 [View Article][PubMed]
    [Google Scholar]
  21. Fernández A., Guo H. S., Sáenz P., Simón-Buela L., Gómez de Cedrón M., García J. A. 1997; The motif V of plum pox potyvirus CI RNA helicase is involved in NTP hydrolysis and is essential for virus RNA replication. Nucleic Acids Res 25:4474–4480 [View Article][PubMed]
    [Google Scholar]
  22. Gabrenaite-Verkhovskaya R., Andreev I. A., Kalinina N. O., Torrance L., Taliansky M. E., Mäkinen K. 2008; Cylindrical inclusion protein of potato virus A is associated with a subpopulation of particles isolated from infected plants. J Gen Virol 89:829–838 [View Article][PubMed]
    [Google Scholar]
  23. Gao Z. H., Johansen E., Eyers S., Thomas C. L., Noel Ellis T. H., Maule A. J. 2004; The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J 40:376–385 [View Article][PubMed]
    [Google Scholar]
  24. German-Retana S., Redondo E., Tavert-Roudet G., Le Gall O., Candresse T. 2003; Introduction of a NIa proteinase cleavage site between the reporter gene and HC-Pro only partially restores the biological properties of GUS- or GFP-tagged LMV. Virus Res 98:151–162 [View Article][PubMed]
    [Google Scholar]
  25. German-Retana S., Walter J., Doublet B., Roudet-Tavert G., Nicaise V., Lecampion C., Houvenaghel M. C., Robaglia C., Michon T., Le Gall O. 2008; Mutational analysis of plant cap-binding protein eIF4E reveals key amino acids involved in biochemical functions and potyvirus infection. J Virol 82:7601–7612 [View Article][PubMed]
    [Google Scholar]
  26. Gómez de Cedrón M., Osaba L., López L., García J. A. 2006; Genetic analysis of the function of the plum pox virus CI RNA helicase in virus movement. Virus Res 116:136–145 [View Article][PubMed]
    [Google Scholar]
  27. Guo D. Y., Rajamäki M. L., Saarma M., Valkonen J. P. T. 2001; Towards a protein interaction map of potyviruses: protein interaction matrixes of two potyviruses based on the yeast two-hybrid system. J Gen Virol 82:935–939[PubMed]
    [Google Scholar]
  28. Huang T.-S., Wei T., Laliberté J.-F., Wang A. 2010; A host RNA helicase-like protein, AtRH8, interacts with the potyviral genome-linked protein, VPg, associates with the virus accumulation complex, and is essential for infection. Plant Physiol 152:255–266 [View Article][PubMed]
    [Google Scholar]
  29. Jenner C. E., Sánchez F., Nettleship S. B., Foster G. D., Ponz F., Walsh J. A. 2000; The cylindrical inclusion gene of Turnip mosaic virus encodes a pathogenic determinant to the Brassica resistance gene TuRB01. Mol Plant Microbe Interact 13:1102–1108 [View Article][PubMed]
    [Google Scholar]
  30. Jiménez I., López L., Alamillo J. M., Valli A., García J. A. 2006; Identification of a plum pox virus CI-interacting protein from chloroplast that has a negative effect in virus infection. Mol Plant Microbe Interact 19:350–358 [View Article][PubMed]
    [Google Scholar]
  31. Jin Y. S., Ma D. Y., Dong J. L., Li D. F., Deng C. W., Jin J. C., Wang T. 2007; The HC-Pro protein of Potato virus Y interacts with NtMinD of tobacco. Mol Plant Microbe Interact 20:1505–1511 [View Article][PubMed]
    [Google Scholar]
  32. Kang B. C., Yeam I., Frantz J. D., Murphy J. F., Jahn M. M. 2005; The pvr1 locus in Capsicum encodes a translation initiation factor eIF4E that interacts with Tobacco etch virus VPg. Plant J 42:392–405 [View Article][PubMed]
    [Google Scholar]
  33. Khan M. A., Miyoshi H., Ray S., Natsuaki T., Suehiro N., Goss D. J. 2006; Interaction of genome-linked protein (VPg) of turnip mosaic virus with wheat germ translation initiation factors eIFiso4E and eIFiso4F. J Biol Chem 281:28002–28010 [View Article][PubMed]
    [Google Scholar]
  34. Langenberg W. G. 1993; Structural proteins of three viruses in the Potyviridae adhere only to their homologous cylindrical inclusions in mixed infections. J Struct Biol 110:188–195 [View Article][PubMed]
    [Google Scholar]
  35. Lellis A. D., Kasschau K. D., Whitham S. A., Carrington J. C. 2002; Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Curr Biol 12:1046–1051 [View Article][PubMed]
    [Google Scholar]
  36. López L., Urzainqui A., Domínguez E., García J. A. 2001; Identification of an N-terminal domain of the plum pox potyvirus CI RNA helicase involved in self-interaction in a yeast two-hybrid system. J Gen Virol 82:677–686[PubMed]
    [Google Scholar]
  37. McClintock K., Lamarre A., Parsons V., Laliberté J. F., Fortin M. G. 1998; Identification of a 37 kDa plant protein that interacts with the turnip mosaic potyvirus capsid protein using anti-idiotypic-antibodies. Plant Mol Biol 37:197–204 [View Article][PubMed]
    [Google Scholar]
  38. Merits A., Guo D. Y., Saarma M. 1998; VPg, coat protein and five non-structural proteins of potato A potyvirus bind RNA in a sequence-unspecific manner. J Gen Virol 79:3123–3127[PubMed]
    [Google Scholar]
  39. Michon T., Estevez Y., Walter J., German-Retana S., Le Gall O. 2006; The potyviral virus genome-linked protein VPg forms a ternary complex with the eukaryotic initiation factors eIF4E and eIF4G and reduces eIF4E affinity for a mRNA cap analogue. FEBS J 273:1312–1322 [View Article][PubMed]
    [Google Scholar]
  40. Nakahara K. S., Shimada R., Choi S. H., Yamamoto H., Shao J., Uyeda I. 2010; Involvement of the P1 cistron in overcoming eIF4E-mediated recessive resistance against Clover yellow vein virus in pea. Mol Plant Microbe Interact 23:1460–1469 [View Article][PubMed]
    [Google Scholar]
  41. Nicaise V., German-Retana S., Sanjuán R., Dubrana M. P., Mazier M., Maisonneuve B., Candresse T., Caranta C., LeGall O. 2003; The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus Lettuce mosaic virus. Plant Physiol 132:1272–1282 [View Article][PubMed]
    [Google Scholar]
  42. Nicaise V., Gallois J. L., Chafiai F., Allen L. M., Schurdi-Levraud V., Browning K. S., Candresse T., Caranta C., Le Gall O., German-Retana S. 2007; Coordinated and selective recruitment of eIF4E and eIF4G factors for potyvirus infection in Arabidopsis thaliana. FEBS Lett 581:1041–1046 [View Article][PubMed]
    [Google Scholar]
  43. Piron F., Nicolaï M., Minoïa S., Piednoir E., Moretti A., Salgues A., Zamir D., Caranta C., Bendahmane A. 2010; An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS One 5:e11313 [View Article][PubMed]
    [Google Scholar]
  44. Robaglia C., Caranta C. 2006; Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci 11:40–45 [View Article][PubMed]
    [Google Scholar]
  45. Roberts I. M., Wang D., Findlay K., Maule A. J. 1998; Ultrastructural and temporal observations of the potyvirus cylindrical inclusions (CIs) show that the CI protein acts transiently in aiding virus movement. Virology 245:173–181 [View Article][PubMed]
    [Google Scholar]
  46. Rodríguez-Cerezo E., Ammar E. D., Pirone T. P., Shaw J. G. 1993; Association of the non-structural P3 viral protein with cylindrical inclusions in potyvirus-infected cells. J Gen Virol 74:1945–1949 [View Article][PubMed]
    [Google Scholar]
  47. Rodríguez-Cerezo E., Findlay K., Shaw J. G., Lomonossoff G. P., Qiu S. G., Linstead P., Shanks M., Risco C. 1997; The coat and cylindrical inclusion proteins of a potyvirus are associated with connections between plant cells. Virology 236:296–306 [View Article][PubMed]
    [Google Scholar]
  48. Roudet-Tavert G., Michon T., Walter J., Delaunay T., Redondo E., Le Gall O. 2007; Central domain of a potyvirus VPg is involved in the interaction with the host translation initiation factor eIF4E and the viral protein HcPro. J Gen Virol 88:1029–1033 [View Article][PubMed]
    [Google Scholar]
  49. Shen W. T., Wang M. Q., Yan P., Gao L., Zhou P. 2010; Protein interaction matrix of papaya ringspot virus type P based on a yeast two-hybrid system. Acta Virol 54:49–54 [View Article][PubMed]
    [Google Scholar]
  50. Shi Y., Chen J., Hong X., Chen J., Adams M. J. 2007; A potyvirus P1 protein interacts with the Rieske Fe/S protein of its host. Mol Plant Pathol 8:785–790 [View Article][PubMed]
    [Google Scholar]
  51. Shukla D. D., Ward C. W., Brunt A. A. 1994 The Potyviridae Wallingford, UK: CAB International;
    [Google Scholar]
  52. Torrance L., Andreev I. A., Gabrenaite-Verhovskaya R., Cowan G., Mäkinen K., Taliansky M. E. 2006; An unusual structure at one end of potato potyvirus particles. J Mol Biol 357:1–8 [View Article][PubMed]
    [Google Scholar]
  53. Wei T., Zhang C., Hong J., Xiong R., Kasschau K. D., Zhou X., Carrington J. C., Wang A. 2010; Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLoS Pathog 6:e1000962 [View Article][PubMed]
    [Google Scholar]
  54. Yeam I., Cavatorta J. R., Ripoll D. R., Kang B. C., Jahn M. M. 2007; Functional dissection of naturally occurring amino acid substitutions in eIF4E that confers recessive potyvirus resistance in plants. Plant Cell 19:2913–2928 [View Article][PubMed]
    [Google Scholar]
  55. Zhang C. Q., Hajimorad M. R., Eggenberger A. L., Tsang S., Whitham S. A., Hill J. H. 2009; Cytoplasmic inclusion cistron of Soybean mosaic virus serves as a virulence determinant on Rsv3-genotype soybean and a symptom determinant. Virology 391:240–248 [View Article][PubMed]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.035881-0
Loading
/content/journal/jgv/10.1099/vir.0.035881-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error