1887

Abstract

To analyse the phenotype of Epstein–Barr virus (EBV)-infected lymphocytes in EBV-associated infections, cells from eight haematopoietic stem cell/liver transplantation recipients with elevated EBV viral loads were examined by a novel quantitative assay designed to identify EBV-infected cells by using a flow cytometric detection of fluorescent hybridization (FISH) assay. By this assay, 0.05–0.78 % of peripheral blood lymphocytes tested positive for EBV, and the EBV-infected cells were CD20 B-cells in all eight patients. Of the CD20 EBV-infected lymphocytes, 48–83 % of cells tested IgD positive and 49–100 % of cells tested CD27 positive. Additionally, the number of EBV-infected cells assayed by using FISH was significantly correlated with the EBV-DNA load, as determined by real-time PCR (  = 0.88, <0.0001). The FISH assay enabled us to characterize EBV-infected cells and perform a quantitative analysis in patients with EBV infection after stem cell/liver transplantation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.033712-0
2011-11-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/11/2590.html?itemId=/content/journal/jgv/10.1099/vir.0.033712-0&mimeType=html&fmt=ahah

References

  1. Adams A., Lindahl T.. ( 1975; ). Epstein-Barr virus genomes with properties of circular DNA molecules in carrier cells. . Proc Natl Acad Sci U S A 72:, 1477–1481. [CrossRef] [PubMed]
    [Google Scholar]
  2. Agematsu K., Nagumo H., Yang F. C., Nakazawa T., Fukushima K., Ito S., Sugita K., Mori T., Kobata T. et al. ( 1997; ). B cell subpopulations separated by CD27 and crucial collaboration of CD27+ B cells and helper T cells in immunoglobulin production. . Eur J Immunol 27:, 2073–2079. [CrossRef] [PubMed]
    [Google Scholar]
  3. Alfieri C., Birkenbach M., Kieff E.. ( 1991; ). Early events in Epstein-Barr virus infection of human B lymphocytes. . Virology 181:, 595–608. [CrossRef] [PubMed]
    [Google Scholar]
  4. Arribas J. R., Clifford D. B., Fichtenbaum C. J., Roberts R. L., Powderly W. G., Storch G. A.. ( 1995; ). Detection of Epstein-Barr virus DNA in cerebrospinal fluid for diagnosis of AIDS-related central nervous system lymphoma. . J Clin Microbiol 33:, 1580–1583.[PubMed]
    [Google Scholar]
  5. Babcock G. J., Decker L. L., Volk M., Thorley-Lawson D. A.. ( 1998; ). EBV persistence in memory B cells in vivo . . Immunity 9:, 395–404. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bingler M. A., Feingold B., Miller S. A., Quivers E., Michaels M. G., Green M., Wadowsky R. M., Rowe D. T., Webber S. A.. ( 2008; ). Chronic high Epstein-Barr viral load state and risk for late-onset posttransplant lymphoproliferative disease/lymphoma in children. . Am J Transplant 8:, 442–445. [CrossRef] [PubMed]
    [Google Scholar]
  7. Calattini S., Sereti I., Scheinberg P., Kimura H., Childs R. W., Cohen J. I.. ( 2010; ). Detection of EBV genomes in plasmablasts/plasma cells and non-B cells in the blood of most patients with EBV lymphoproliferative disorders by using immuno-FISH. . Blood 116:, 4546–4559. [CrossRef] [PubMed]
    [Google Scholar]
  8. D’Antiga L., Del Rizzo M., Mengoli C., Cillo U., Guariso G., Zancan L.. ( 2007; ). Sustained Epstein–Barr virus detection in paediatric liver transplantation. Insights into the occurrence of late PTLD. . Liver Transpl 13:, 343–348. [CrossRef] [PubMed]
    [Google Scholar]
  9. Douek D. C., Vescio R. A., Betts M. R., Brenchley J. M., Hill B. J., Zhang L., Berenson J. R., Collins R. H., Koup R. A.. ( 2000; ). Assessment of thymic output in adults after haematopoietic stem-cell transplantation and prediction of T-cell reconstitution. . Lancet 355:, 1875–1881. [CrossRef] [PubMed]
    [Google Scholar]
  10. Gotoh K., Ito Y., Ohta R., Iwata S., Nishiyama Y., Nakamura T., Kaneko K., Kiuchi T., Ando H., Kimura H.. ( 2010; ). Immunologic and virologic analyses in pediatric liver transplant recipients with chronic high Epstein–Barr virus loads. . J Infect Dis 202:, 461–469. [CrossRef] [PubMed]
    [Google Scholar]
  11. Green M., Soltys K., Rowe D. T., Webber S. A., Mazareigos G.. ( 2009; ). Chronic high Epstein–Barr viral load carriage in pediatric liver transplant recipients. . Pediatr Transplant 13:, 319–323. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hochberg D., Souza T., Catalina M., Sullivan J. L., Luzuriaga K., Thorley-Lawson D. A.. ( 2004; ). Acute infection with Epstein-Barr virus targets and overwhelms the peripheral memory B-cell compartment with resting, latently infected cells. . J Virol 78:, 5194–5204. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kimura H., Morita M., Yabuta Y., Kuzushima K., Kato K., Kojima S., Matsuyama T., Morishima T.. ( 1999; ). Quantitative analysis of Epstein–Barr virus load by using a real-time PCR assay. . J Clin Microbiol 37:, 132–136.[PubMed]
    [Google Scholar]
  14. Kimura H., Miyake K., Yamauchi Y., Nishiyama K., Iwata S., Iwatsuki K., Gotoh K., Kojima S., Ito Y., Nishiyama Y.. ( 2009; ). Identification of Epstein–Barr virus (EBV)-infected lymphocyte subtypes by flow cytometric in situ hybridization in EBV-associated lymphoproliferative diseases. . J Infect Dis 200:, 1078–1087. [CrossRef] [PubMed]
    [Google Scholar]
  15. Klein U., Rajewsky K., Küppers R.. ( 1998; ). Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. . J Exp Med 188:, 1679–1689. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kurth J., Spieker T., Wustrow J., Strickler G. J., Hansmann L. M., Rajewsky K., Küppers R.. ( 2000; ). EBV-infected B cells in infectious mononucleosis: viral strategies for spreading in the B cell compartment and establishing latency. . Immunity 13:, 485–495. [CrossRef] [PubMed]
    [Google Scholar]
  17. Rickinson A. B., Kieff E.. ( 2006; ). Epstein-Barr virus. . In Fields Virology, , 5th edn., pp. 2655–2700. Edited by Knipe D. M., Howley P. M... Philadelphia, PA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  18. Rose C., Green M., Webber S., Kingsley L., Day R., Watkins S., Reyes J., Rowe D.. ( 2002; ). Detection of Epstein–Barr virus genomes in peripheral blood B cells from solid-organ transplant recipients by fluorescence in situ hybridization. . J Clin Microbiol 40:, 2533–2544. [CrossRef] [PubMed]
    [Google Scholar]
  19. Storek J., Ferrara S., Ku N., Giorgi J. V., Champlin R. E., Saxon A.. ( 1993; ). B cell reconstitution after human bone marrow transplantation: recapitulation of ontogeny?. Bone Marrow Transplant 12:, 387–398.[PubMed]
    [Google Scholar]
  20. Storek J., Wells D., Dawson M. A., Storer B., Maloney D. G.. ( 2001; ). Factors influencing B lymphopoiesis after allogeneic hematopoietic cell transplantation. . Blood 98:, 489–491. [CrossRef] [PubMed]
    [Google Scholar]
  21. Thorley-Lawson D. A., Gross A.. ( 2004; ). Persistence of the Epstein–Barr virus and the origins of associated lymphomas. . N Engl J Med 350:, 1328–1337. [CrossRef] [PubMed]
    [Google Scholar]
  22. Wada K., Kubota N., Ito Y., Yagasaki H., Kato K., Yoshikawa T., Ono Y., Ando H., Fujimoto Y. et al. ( 2007; ). Simultaneous quantification of Epstein–Barr virus, cytomegalovirus, and human herpesvirus 6 DNA in samples from transplant recipients by multiplex real-time PCR assay. . J Clin Microbiol 45:, 1426–1432. [CrossRef] [PubMed]
    [Google Scholar]
  23. Yoshida T., Mei H., Dörner T., Hiepe F., Radbruch A., Fillatreau S., Hoyer B. F.. ( 2010; ). Memory B and memory plasma cells. . Immunol Rev 237:, 117–139. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.033712-0
Loading
/content/journal/jgv/10.1099/vir.0.033712-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error