1887

Abstract

Despite current molecular evidence suggesting that hepatitis B virus (HBV) X protein (HBx) plays an important role during HBV-mediated hepatocarcinogenesis, the detailed mechanism is still controversial. Here, it was shown that HBx overcomes cellular senescence provoked by all- retinoic acid (ATRA) in HepG2 cells, as demonstrated by the impaired induction of irreversible G arrest and senescence-associated βgalactosidase activity by ATRA in the presence of HBx. The anti-senescence effect of HBx was also observed in another human hepatoma cell line, Hep3B, but not in Huh-7 cells in which the p16 and p21 proteins are absent. In addition, HBx suppressed ATRA-mediated induction of p16 and p21 in HepG2 cells via promoter hypermethylation, resulting in inactivation of retinoblastoma protein. Furthermore, the ability of HBx to overcome ATRA-induced cellular senescence almost completely disappeared when the levels of p16 and p21 in the HBx-expressing cells became similar to those in the control cells by complementation in the former by exogenous expression, knockdown of their expression in the latter using specific small interfering RNA or treatment with a DNA methylation inhibitor, 5-Aza-2′-deoxycytidine. These results suggest that HBx executes its potential by downregulating levels of p16 and p21 via DNA methylation. As cellular senescence is a tumour-suppression process, the present study provides a new strategy by which HBV promotes hepatocarcinogenesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.029512-0
2011-06-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/6/1309.html?itemId=/content/journal/jgv/10.1099/vir.0.029512-0&mimeType=html&fmt=ahah

References

  1. Ahn J. Y., Jung E. Y., Kwun H. J., Lee C.-W., Sung Y.-C., Jang K. L.. ( 2002;). Dual effects of hepatitis B virus X protein on the regulation of cell-cycle control depending on the status of cellular p53. . J Gen Virol 83:, 2765–2772.[PubMed]
    [Google Scholar]
  2. Alisi A., Leoni S., Piacentani A., Conti Devirgiliis L.. ( 2003;). Retinoic acid modulates the cell-cycle in fetal rat hepatocytes and HepG2 cells by regulating cyclin-cdk activities. . Liver Int 23:, 179–186. [CrossRef][PubMed]
    [Google Scholar]
  3. Benn J., Su F., Doria M., Schneider R. J.. ( 1996;). Hepatitis B virus HBx protein induces transcription factor AP-1 by activation of extracellular signal-regulated and c-Jun N-terminal mitogen-activated protein kinases. . J Virol 70:, 4978–4985.[PubMed]
    [Google Scholar]
  4. Bond J., Jones C., Haughton M., DeMicco C., Kipling D., Wynford-Thomas D.. ( 2004;). Direct evidence from siRNA-directed “knock down” that p16INK4a is required for human fibroblast senescence and for limiting ras-induced epithelial cell proliferation. . Exp Cell Res 292:, 151–156. [CrossRef][PubMed]
    [Google Scholar]
  5. Campisi J.. ( 2005;). Suppressing cancer: the importance of being senescent. . Science 309:, 886–887. [CrossRef][PubMed]
    [Google Scholar]
  6. DeFilippis R. A., Goodwin E. C., Wu L., DiMaio D.. ( 2003;). Endogenous human papillomavirus E6 and E7 proteins differentially regulate proliferation, senescence, and apoptosis in HeLa cervical carcinoma cells. . J Virol 77:, 1551–1563. [CrossRef][PubMed]
    [Google Scholar]
  7. Dimri G. P., Lee X., Basile G., Acosta M., Scott G., Roskelley C., Medrano E. E., Linskens M., Rubelj I. et al. ( 1995;). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. . Proc Natl Acad Sci U S A 92:, 9363–9367. [CrossRef][PubMed]
    [Google Scholar]
  8. El-Deiry W. S., Tokino T., Velculescu V. E., Levy D. B., Parsons R., Trent J. M., Lin D., Mercer W. E., Kinzler K. W., Vogelstein B.. ( 1993;). WAF1, a potential mediator of p53 tumor suppression. . Cell 75:, 817–825. [CrossRef][PubMed]
    [Google Scholar]
  9. Fazi F., Travaglini L., Carotti D., Palitti F., Diverio D., Alcalay M., McNamara S., Miller W. H. Jr, Lo Coco F. et al. ( 2005;). Retinoic acid targets DNA-methyltransferases and histone deacetylases during APL blast differentiation in vitro and in vivo. . Oncogene 24:, 1820–1830. [CrossRef][PubMed]
    [Google Scholar]
  10. Freemantle S. J., Dragnev K. H., Dmitrovsky E.. ( 2006;). The retinoic acid paradox in cancer chemoprevention. . J Natl Cancer Inst 98:, 426–427. [CrossRef][PubMed]
    [Google Scholar]
  11. Frippiat C., Chen Q. M., Zdanov S., Magalhaes J. P., Remacle J., Toussaint O.. ( 2001;). Subcytotoxic H2O2 stress triggers a release of transforming growth factor-β1, which induces biomarkers of cellular senescence of human diploid fibroblasts. . J Biol Chem 276:, 2531–2537. [CrossRef][PubMed]
    [Google Scholar]
  12. Hashimoto O., Ueno T., Kimura R., Ohtsubo M., Nakamura T., Koga H., Torimura T., Uchida S., Yamashita K., Sata M.. ( 2003;). Inhibition of proteasome-dependent degradation of Wee1 in G2-arrested Hep3B cells by TGFβ1. . Mol Carcinog 36:, 171–182. [CrossRef][PubMed]
    [Google Scholar]
  13. Herman J. G., Graff J. R., Myöhänen S., Nelkin B. D., Baylin S. B.. ( 1996;). Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. . Proc Natl Acad Sci U S A 93:, 9821–9826. [CrossRef][PubMed]
    [Google Scholar]
  14. Hoffman A. D., Engelstein D., Bogenrieder T., Papandreou C. N., Steckelman E., Dave A., Motzer R. J., Dmitrovsky E., Albino A. P., Nanus D. M.. ( 1996;). Expression of retinoic acid receptor beta in human renal cell carcinomas correlates with sensitivity to the antiproliferative effects of 13-cis-retinoic acid. . Clin Cancer Res 2:, 1077–1082.[PubMed]
    [Google Scholar]
  15. Hu L., Crowe D. L., Rheinwald J. G., Chambon P., Gudas L. J.. ( 1991;). Abnormal expression of retinoic acid receptors and keratin 19 by human oral and epidermal squamous cell carcinoma cell lines. . Cancer Res 51:, 3972–3981.[PubMed]
    [Google Scholar]
  16. Jung H. Y., Park S. H., Yoo Y. D., Kim J. S., Kim Y. H.. ( 2005;). CDK2/4 regulate retinoic acid-induced G1 arrest in hepatocellular carcinoma cells. . Hepatol Res 31:, 143–152. [CrossRef][PubMed]
    [Google Scholar]
  17. Jung J. K., Arora P., Pagano J. S., Jang K. L.. ( 2007;). Expression of DNA methyltransferase 1 is activated by hepatitis B virus X protein via a regulatory circuit involving the p16INK4a-cyclin D1-CDK 4/6-pRb-E2F1 pathway. . Cancer Res 67:, 5771–5778. [CrossRef][PubMed]
    [Google Scholar]
  18. Jung J. K., Park S. H., Jang K. L.. ( 2010;). Hepatitis B virus X protein overcomes the growth-inhibitory potential of retinoic acid by downregulating retinoic acid receptor-β2 expression via DNA methylation. . J Gen Virol 91:, 493–500. [CrossRef][PubMed]
    [Google Scholar]
  19. Kastner P., Mark M., Chambon P.. ( 1995;). Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life?. Cell 83:, 859–869. [CrossRef][PubMed]
    [Google Scholar]
  20. Kim C. M., Koike K., Saito I., Miyamura T., Jay G.. ( 1991;). HBx gene of hepatitis B virus induces liver cancer in transgenic mice. . Nature 351:, 317–320. [CrossRef][PubMed]
    [Google Scholar]
  21. Kwun H. J., Jang K. L.. ( 2004;). Natural variants of hepatitis B virus X protein have differential effects on the expression of cyclin-dependent kinase inhibitor p21 gene. . Nucleic Acids Res 32:, 2202–2213. [CrossRef][PubMed]
    [Google Scholar]
  22. Lee Y. H., Yun Y.. ( 1998;). HBx protein of hepatitis B virus activates Jak1-STAT signaling. . J Biol Chem 273:, 25510–25515. [CrossRef][PubMed]
    [Google Scholar]
  23. Liu M., Iavarone A., Freedman L. P.. ( 1996;). Transcriptional activation of the human p21WAF1/CIP1 gene by retinoic acid receptor. Correlation with retinoid induction of U937 cell differentiation. . J Biol Chem 271:, 31723–31728. [CrossRef][PubMed]
    [Google Scholar]
  24. Maguire H. F., Hoeffler J. P., Siddiqui A.. ( 1991;). HBV X protein alters the DNA binding specificity of CREB and ATF-2 by protein–protein interactions. . Science 252:, 842–844. [CrossRef][PubMed]
    [Google Scholar]
  25. Matsushima-Nishiwaki R., Okuno M., Adachi S., Sano T., Akita K., Moriwaki H., Friedman S. L., Kojima S.. ( 2001;). Phosphorylation of retinoid X receptor alpha at serine 260 impairs its metabolism and function in human hepatocellular carcinoma. . Cancer Res 61:, 7675–7682.[PubMed]
    [Google Scholar]
  26. Narimatsu T., Tamori A., Koh N., Kubo S., Hirohashi K., Yano Y., Arakawa T., Otani S., Nishiguchi S.. ( 2004;). p16 promoter hypermethylation in human hepatocellular carcinoma with or without hepatitis virus infection. . Intervirology 47:, 26–31. [CrossRef][PubMed]
    [Google Scholar]
  27. Narita M., Nũnez S., Heard E., Narita M., Lin A. W., Hearn S. A., Spector D. L., Hannon G. J., Lowe S. W.. ( 2003;). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. . Cell 113:, 703–716. [CrossRef][PubMed]
    [Google Scholar]
  28. Ohtani N., Zebedee Z., Huot T. J., Stinson J. A., Sugimoto M., Ohashi Y., Sharrocks A. D., Peters G., Hara E.. ( 2001;). Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. . Nature 409:, 1067–1070. [CrossRef][PubMed]
    [Google Scholar]
  29. Ozturk M., Arslan-Ergul A., Bagislar S., Senturk S., Yuzugullu H.. ( 2009;). Senescence and immortality in hepatocellular carcinoma. . Cancer Lett 286:, 103–113. [CrossRef][PubMed]
    [Google Scholar]
  30. Park I. Y., Sohn B. H., Yu E., Suh D. J., Chung Y. H., Lee J. H., Surzycki S. J., Lee Y. I.. ( 2007;). Aberrant epigenetic modifications in hepatocarcinogenesis induced by hepatitis B virus X protein. . Gastroenterology 132:, 1476–1494. [CrossRef][PubMed]
    [Google Scholar]
  31. Paterlini P., Poussin K., Kew M., Franco D., Brechot C.. ( 1995;). Selective accumulation of the X transcript of hepatitis B virus in patients negative for hepatitis B surface antigen with hepatocellular carcinoma. . Hepatology 21:, 313–321.[PubMed]
    [Google Scholar]
  32. Qadri I., Maguire H. F., Siddiqui A.. ( 1995;). Hepatitis B virus transactivator protein X interacts with the TATA-binding protein. . Proc Natl Acad Sci U S A 92:, 1003–1007. [CrossRef][PubMed]
    [Google Scholar]
  33. Rao A., Coan A., Welsh J.--E., Barclay W. W., Koumenis C., Cramer S. D.. ( 2004;). Vitamin D receptor and p21/WAF1 are targets of genistein and 1,25-dihydroxyvitamin D3 in human prostate cancer cells. . Cancer Res 64:, 2143–2147. [CrossRef][PubMed]
    [Google Scholar]
  34. Schmitt C. A.. ( 2007;). Cellular senescence and cancer treatment. . Biochim Biophys Acta 1775:, 5–20.[PubMed]
    [Google Scholar]
  35. Serrano M., Lin A. W., McCurrach M. E., Beach D., Lowe S. W.. ( 1997;). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. . Cell 88:, 593–602. [CrossRef][PubMed]
    [Google Scholar]
  36. Shay J. W., Pereira-Smith O. M., Wright W. E.. ( 1991;). A role for both RB and p53 in the regulation of human cellular senescence. . Exp Cell Res 196:, 33–39. [CrossRef][PubMed]
    [Google Scholar]
  37. Shih W.-L., Kuo M.-L., Chuang S.-E., Cheng A.-L., Doong S.-L.. ( 2000;). Hepatitis B virus X protein inhibits transforming growth factor-β-induced apoptosis through the activation of phosphatidylinositol 3-kinase pathway. . J Biol Chem 275:, 25858–25864. [CrossRef][PubMed]
    [Google Scholar]
  38. Teixeira C., Pratt M. A.. ( 1997;). CDK2 is a target for retinoic acid-mediated growth inhibition in MCF-7 human breast cancer cells. . Mol Endocrinol 11:, 1191–1202. [CrossRef][PubMed]
    [Google Scholar]
  39. Tong A., Gou L., Lau Q. C., Chen B., Zhao X., Li J., Tang H., Chen L., Tang M. et al. ( 2009;). Proteomic profiling identifies aberrant epigenetic modifications induced by hepatitis B virus X protein. . J Proteome Res 8:, 1037–1046. [CrossRef][PubMed]
    [Google Scholar]
  40. Tsai W.-L., Chung R. T.. ( 2010;). Viral hepatocarcinogenesis. . Oncogene 29:, 2309–2324. [CrossRef][PubMed]
    [Google Scholar]
  41. Yan Q., Wajapeyee N.. ( 2010;). Exploiting cellular senescence to treat cancer and circumvent drug resistance. . Cancer Biol Ther 9:, 166–175. [CrossRef][PubMed]
    [Google Scholar]
  42. Zheng D.-L., Zhang L., Cheng N., Xu X., Deng Q., Teng X.-M., Wang K.-S., Zhang X., Huang J., Han Z.-G.. ( 2009;). Epigenetic modification induced by hepatitis B virus X protein via interaction with de novo DNA methyltransferase DNMT3A. . J Hepatol 50:, 377–387. [CrossRef][PubMed]
    [Google Scholar]
  43. Zhu R., Li B.-Z., Li H., Ling Y.-Q., Hu X.-Q., Zhai W.-R., Zhu H.-G.. ( 2007;). Association of p16INK4A hypermethylation with hepatitis B virus X protein expression in the early stage of HBV-associated hepatocarcinogenesis. . Pathol Int 57:, 328–336. [CrossRef][PubMed]
    [Google Scholar]
  44. Zhu Y.-Z., Zhu R., Fan J., Pan Q., Li H., Chen Q., Zhu H.-G.. ( 2010;). Hepatitis B virus X protein induces hypermethylation of p16INK4A promoter via DNA methyltransferases in the early stage of HBV-associated hepatocarcinogenesis. . J Viral Hepat 17:, 98–107. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.029512-0
Loading
/content/journal/jgv/10.1099/vir.0.029512-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error