Cancers with viral aetiologies can potentially be prevented by antiviral vaccines. Therefore, it is important to understand how viral infections and cancers might be linked. Some cancers frequently carry gammaherpesvirus genomes. However, they generally express the same viral genes as non-transformed cells, and differ mainly in also carrying oncogenic host mutations. Infection, therefore, seems to play a triggering or accessory role in disease. The hit-and-run hypothesis proposes that cumulative host mutations can allow viral genomes to be lost entirely, such that cancers remaining virus-positive represent only a fraction of those to which infection contributes. This would have considerable implications for disease control. However, the hit-and-run hypothesis has so far lacked experimental support. Here, we tested it by using Cre– recombination to trigger transforming mutations in virus-infected cells. Thus, ‘floxed’ oncogene mice were infected with Cre recombinase-positive murid herpesvirus-4 (MuHV-4). The emerging cancers showed the expected genetic changes but, by the time of presentation, almost all lacked viral genomes. Vaccination with a non-persistent MuHV-4 mutant nonetheless conferred complete protection. Equivalent human gammaherpesvirus vaccines could therefore potentially prevent not only viral genome-positive cancers, but possibly also some cancers less suspected of a viral origin because of viral genome loss.


Article metrics loading...

Loading full text...

Full text loading...



  1. Adler, H., Messerle, M., Wagner, M. & Koszinowski, U. H.(2000). Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol 74, 6964–6974.[CrossRef] [Google Scholar]
  2. Ambinder, R. F.(2000). Gammaherpesviruses and “hit-and-run” oncogenesis. Am J Pathol 156, 1–3.[CrossRef] [Google Scholar]
  3. Bennett, N. J., May, J. S. & Stevenson, P. G.(2005). Gamma-herpesvirus latency requires T cell evasion during episome maintenance. PLoS Biol 3, e120[CrossRef] [Google Scholar]
  4. Blumberg, B. S.(1997). Hepatitis B virus, the vaccine, and the control of primary cancer of the liver. Proc Natl Acad Sci U S A 94, 7121–7125.[CrossRef] [Google Scholar]
  5. Boname, J. M., Coleman, H. M., May, J. S. & Stevenson, P. G.(2004). Protection against wild-type murine gammaherpesvirus-68 latency by a latency-deficient mutant. J Gen Virol 85, 131–135.[CrossRef] [Google Scholar]
  6. Bowden, R. J., Simas, J. P., Davis, A. J. & Efstathiou, S.(1997). Murine gammaherpesvirus 68 encodes tRNA-like sequences that are expressed during latency. J Gen Virol 78, 1675–1687. [Google Scholar]
  7. Carbone, A., Cesarman, E., Spina, M., Gloghini, A. & Schulz, T. F.(2009). HIV-associated lymphomas and gamma-herpesviruses. Blood 113, 1213–1224.[CrossRef] [Google Scholar]
  8. de Lima, B. D., May, J. S. & Stevenson, P. G.(2004). Murine gammaherpesvirus 68 lacking gp150 shows defective virion release but establishes normal latency in vivo. J Virol 78, 5103–5112.[CrossRef] [Google Scholar]
  9. Deyrup, A. T.(2008). Epstein–Barr virus-associated epithelial and mesenchymal neoplasms. Hum Pathol 39, 473–483.[CrossRef] [Google Scholar]
  10. Dittmer, D. P., Hilscher, C. J., Gulley, M. L., Yang, E. V., Chen, M. & Glaser, R.(2008). Multiple pathways for Epstein–Barr virus episome loss from nasopharyngeal carcinoma. Int J Cancer 123, 2105–2112.[CrossRef] [Google Scholar]
  11. DuPage, M., Dooley, A. L. & Jacks, T.(2009). Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc 4, 1064–1072.[CrossRef] [Google Scholar]
  12. Efstathiou, S., Ho, Y. M. & Minson, A. C.(1990). Cloning and molecular characterization of the murine herpesvirus 68 genome. J Gen Virol 71, 1355–1364.[CrossRef] [Google Scholar]
  13. Fowler, P. & Efstathiou, S.(2004). Vaccine potential of a murine gammaherpesvirus-68 mutant deficient for ORF73. J Gen Virol 85, 609–613.[CrossRef] [Google Scholar]
  14. Fowler, P., Marques, S., Simas, J. P. & Efstathiou, S.(2003). ORF73 of murine herpesvirus-68 is critical for the establishment and maintenance of latency. J Gen Virol 84, 3405–3416.[CrossRef] [Google Scholar]
  15. Frazer, I. H.(2004). Prevention of cervical cancer through papillomavirus vaccination. Nat Rev Immunol 4, 46–54.[CrossRef] [Google Scholar]
  16. Ganem, D.(2006). KSHV infection and the pathogenesis of Kaposi's sarcoma. Annu Rev Pathol 1, 273–296.[CrossRef] [Google Scholar]
  17. Gaspar, M., Gill, M. B., Lösing, J. B., May, J. S. & Stevenson, P. G.(2008). Multiple functions for ORF75c in murid herpesvirus-4 infection. PLoS One 3, e2781[CrossRef] [Google Scholar]
  18. Hammerschmidt, W. & Sugden, B.(2004). Epstein–Barr virus sustains Burkitt's lymphomas and Hodgkin's disease. Trends Mol Med 10, 331–336.[CrossRef] [Google Scholar]
  19. Jackson, E. L., Willis, N., Mercer, K., Bronson, R. T., Crowley, D., Montoya, R., Jacks, T. & Tuveson, D. A.(2001). Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15, 3243–3248.[CrossRef] [Google Scholar]
  20. Janssen, K. P., Abal, M., El Marjou, F., Louvard, D. & Robine, S.(2005). Mouse models of K-ras-initiated carcinogenesis. Biochim Biophys Acta 1756, 145–154. [Google Scholar]
  21. Kang, M. S., Lu, H., Yasui, T., Sharpe, A., Warren, H., Cahir-McFarland, E., Bronson, R., Hung, S. C. & Kieff, E.(2005). Epstein–Barr virus nuclear antigen 1 does not induce lymphoma in transgenic FVB mice. Proc Natl Acad Sci U S A 102, 820–825.[CrossRef] [Google Scholar]
  22. Marino, S., Vooijs, M., van Der Gulden, H., Jonkers, J. & Berns, A.(2000). Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev 14, 994–1004. [Google Scholar]
  23. May, J. S., Coleman, H. M., Smillie, B., Efstathiou, S. & Stevenson, P. G.(2004). Forced lytic replication impairs host colonization by a latency-deficient mutant of murine gammaherpesvirus-68. J Gen Virol 85, 137–146.[CrossRef] [Google Scholar]
  24. Milho, R., Smith, C. M., Marques, S., Alenquer, M., May, J. S., Gillet, L., Gaspar, M., Efstathiou, S., Simas, J. P. & Stevenson, P. G.(2009).In vivo imaging of murid herpesvirus-4 infection. J Gen Virol 90, 21–32.[CrossRef] [Google Scholar]
  25. Moorman, N. J., Willer, D. O. & Speck, S. H.(2003). The gammaherpesvirus 68 latency-associated nuclear antigen homolog is critical for the establishment of splenic latency. J Virol 77, 10295–10303.[CrossRef] [Google Scholar]
  26. Münz, C.(2004). Epstein–Barr virus nuclear antigen 1: from immunologically invisible to a promising T cell target. J Exp Med 199, 1301–1304.[CrossRef] [Google Scholar]
  27. Nicolaides, A., Huang, Y. Q., Li, J. J., Zhang, W. G. & Friedman-Kien, A. E.(1994). Gene amplification and multiple mutations of the K-ras oncogene in Kaposi's sarcoma. Anticancer Res 14, 921–926. [Google Scholar]
  28. Pleasance, E. D., Cheetham, R. K., Stephens, P. J., McBride, D. J., Humphray, S. J., Greenman, C. D., Varela, I., Lin, M. L., Ordóñez, G. R. & other authors(2010). A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463, 191–196.[CrossRef] [Google Scholar]
  29. Proença, J. T., Coleman, H. M., Connor, V., Winton, D. J. & Efstathiou, S.(2008). A historical analysis of herpes simplex virus promoter activation in vivo reveals distinct populations of latently infected neurones. J Gen Virol 89, 2965–2974.[CrossRef] [Google Scholar]
  30. Rickabaugh, T. M., Brown, H. J., Martinez-Guzman, D., Wu, T. T., Tong, L., Yu, F., Cole, S. & Sun, R.(2004). Generation of a latency-deficient gammaherpesvirus that is protective against secondary infection. J Virol 78, 9215–9223.[CrossRef] [Google Scholar]
  31. Rickinson, A. B. & Moss, D. J.(1997). Human cytotoxic T lymphocyte responses to Epstein–Barr virus infection. Annu Rev Immunol 15, 405–431.[CrossRef] [Google Scholar]
  32. Rosa, G. T., Gillet, L., Smith, C. M., de Lima, B. D. & Stevenson, P. G.(2007). IgG Fc receptors provide an alternative infection route for murine gamma-herpesvirus-68. PLoS One 2, e560[CrossRef] [Google Scholar]
  33. Shah, K. M. & Young, L. S.(2009). Epstein–Barr virus and carcinogenesis: beyond Burkitt's lymphoma. Clin Microbiol Infect 15, 982–988.[CrossRef] [Google Scholar]
  34. Smith, G. A. & Enquist, L. W.(2000). A self-recombining bacterial artificial chromosome and its application for analysis of herpesvirus pathogenesis. Proc Natl Acad Sci U S A 97, 4873–4878.[CrossRef] [Google Scholar]
  35. Smith, C. M., Gill, M. B., May, J. S. & Stevenson, P. G.(2007). Murine gammaherpesvirus-68 inhibits antigen presentation by dendritic cells. PLoS One 2, e1048[CrossRef] [Google Scholar]
  36. Sokal, E. M., Hoppenbrouwers, K., Vandermeulen, C., Moutschen, M., Léonard, P., Moreels, A., Haumont, M., Bollen, A., Smets, F. & Denis, M.(2007). Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein–Barr virus vaccine in healthy young adults. J Infect Dis 196, 1749–1753.[CrossRef] [Google Scholar]
  37. Soriano, P.(1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21, 70–71.[CrossRef] [Google Scholar]
  38. Stevenson, P. G., May, J. S., Smith, X. G., Marques, S., Adler, H., Koszinowski, U. H., Simas, J. P. & Efstathiou, S.(2002). K3-mediated evasion of CD8+ T cells aids amplification of a latent γ-herpesvirus. Nat Immunol 3, 733–740. [Google Scholar]
  39. Stevenson, P. G., Simas, J. P. & Efstathiou, S.(2009). Immune control of mammalian gamma-herpesviruses: lessons from murid herpesvirus-4. J Gen Virol 90, 2317–2330.[CrossRef] [Google Scholar]
  40. Stewart, J. P., Usherwood, E. J., Ross, A., Dyson, H. & Nash, T.(1998). Lung epithelial cells are a major site of murine gammaherpesvirus persistence. J Exp Med 187, 1941–1951.[CrossRef] [Google Scholar]
  41. Suárez, A. L. & van Dyk, L. F.(2008). Endothelial cells support persistent gammaherpesvirus 68 infection. PLoS Pathog 4, e1000152[CrossRef] [Google Scholar]
  42. Sunil-Chandra, N. P., Efstathiou, S. & Nash, A. A.(1992). Murine gammaherpesvirus 68 establishes a latent infection in mouse B lymphocytes in vivo. J Gen Virol 73, 3275–3279.[CrossRef] [Google Scholar]
  43. Sunil-Chandra, N. P., Arno, J., Fazakerley, J. & Nash, A. A.(1994). Lymphoproliferative disease in mice infected with murine gammaherpesvirus 68. Am J Pathol 145, 818–826. [Google Scholar]
  44. Tarakanova, V. L., Suarez, F., Tibbetts, S. A., Jacoby, M. A., Weck, K. E., Hess, J. L., Speck, S. H. & Virgin, H. W., IV(2005). Murine gammaherpesvirus 68 infection is associated with lymphoproliferative disease and lymphoma in BALB β2 microglobulin-deficient mice. J Virol 79, 14668–14679.[CrossRef] [Google Scholar]
  45. Thorley-Lawson, D. A. & Allday, M. J.(2008). The curious case of the tumour virus: 50 years of Burkitt's lymphoma. Nat Rev Microbiol 6, 913–924.[CrossRef] [Google Scholar]
  46. Tibbetts, S. A., McClellan, J. S., Gangappa, S., Speck, S. H. & Virgin, H. W., IV(2003). Effective vaccination against long-term gammaherpesvirus latency. J Virol 77, 2522–2529.[CrossRef] [Google Scholar]
  47. Yin, Y., Manoury, B. & Fahraeus, R.(2003). Self-inhibition of synthesis and antigen presentation by Epstein–Barr virus-encoded EBNA1. Science 301, 1371–1374.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error