1887

Abstract

The influenza A virus RNA-dependent RNA polymerase produces capped and polyadenylated mRNAs in the nucleus of infected cells that resemble mature cellular mRNAs, but are made by very different mechanisms. Furthermore, only two of the 10 viral protein-coding mRNAs are spliced: most are intronless, while two contain unremoved introns. The mechanism(s) by which any of these mRNAs are exported from the nucleus is uncertain. To probe the involvement of the primary cellular mRNA export pathway, we treated cells with siRNAs against NXF1, Aly or UAP56, or with the drug 5,6-dichloro-1---ribofuranosyl-benzimidazole (DRB), an inhibitor of RNA polymerase II phosphorylation previously shown to inhibit nuclear export of cellular mRNA as well as influenza virus segment 7 mRNAs. Depletion of NXF1 or DRB treatment had similar effects, inhibiting the nuclear export of several of the viral mRNAs. However, differing degrees of sensitivity were seen, depending on the particular segment examined. Intronless HA mRNA and spliced M2 or unspliced M1 transcripts (all encoding late proteins) showed a strong requirement for NXF1, while intronless early gene mRNAs, especially NP mRNA, showed the least dependency. Depletion of Aly had little effect on viral mRNA export, but reduction of UAP56 levels strongly inhibited trafficking and/or translation of the M1, M2 and NS1 mRNAs. Synthesis of NS2 from the spliced segment 8 transcript was, however, resistant. We conclude that influenza A virus co-opts the main cellular mRNA export pathway for a subset of its mRNAs, including most but not all late gene transcripts.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.018564-0
2010-05-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/5/1290.html?itemId=/content/journal/jgv/10.1099/vir.0.018564-0&mimeType=html&fmt=ahah

References

  1. Amorim, M. J. & Digard, P. ( 2006; ). Influenza A virus and the cell nucleus. Vaccine 24, 6651–6655.[CrossRef]
    [Google Scholar]
  2. Amorim, M. J., Read, E. K., Dalton, R. M., Medcalf, L. & Digard, P. ( 2007; ). Nuclear export of influenza A virus mRNAs requires ongoing RNA polymerase II activity. Traffic 8, 1–11.[CrossRef]
    [Google Scholar]
  3. Boyne, J. R., Colgan, K. J. & Whitehouse, A. ( 2008; ). Recruitment of the complete hTREX complex is required for Kaposi's sarcoma-associated herpesvirus intronless mRNA nuclear export and virus replication. PLoS Pathog 4, e1000194 [CrossRef]
    [Google Scholar]
  4. Braam, J., Ulmanen, I. & Krug, R. M. ( 1983; ). Molecular model of a eucaryotic transcription complex: functions and movements of influenza P proteins during capped RNA-primed transcription. Cell 34, 609–618.
    [Google Scholar]
  5. Carmody, S. R. & Wente, S. R. ( 2009; ). mRNA nuclear export at a glance. J Cell Sci 122, 1933–1937.[CrossRef]
    [Google Scholar]
  6. Carrasco, M., Amorim, M. J. & Digard, P. ( 2004; ). Lipid raft-dependent targeting of the influenza A virus nucleoprotein to the apical plasma membrane. Traffic 5, 979–992.[CrossRef]
    [Google Scholar]
  7. Cheng, H., Dufu, K., Lee, C. S., Hsu, J. L., Dias, A. & Reed, R. ( 2006; ). Human mRNA export machinery recruited to the 5′ end of mRNA. Cell 127, 1389–1400.[CrossRef]
    [Google Scholar]
  8. Clement, J. Q. & Wilkinson, M. F. ( 2000; ). Rapid induction of nuclear transcripts and inhibition of intron decay in response to the polymerase II inhibitor DRB. J Mol Biol 299, 1179–1191.[CrossRef]
    [Google Scholar]
  9. Cullen, B. R. ( 2003; ). Nuclear mRNA export: insights from virology. Trends Biochem Sci 28, 419–424.[CrossRef]
    [Google Scholar]
  10. Elton, D., Simpson-Holley, M., Archer, K., Medcalf, L., Hallam, R., McCauley, J. & Digard, P. ( 2001; ). Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway. J Virol 75, 408–419.[CrossRef]
    [Google Scholar]
  11. Engelhardt, O. G., Smith, M. & Fodor, E. ( 2005; ). Association of the influenza A virus RNA-dependent RNA polymerase with cellular RNA polymerase II. J Virol 79, 5812–5818.[CrossRef]
    [Google Scholar]
  12. Erkmann, J. A. & Kutay, U. ( 2004; ). Nuclear export of mRNA: from the site of transcription to the cytoplasm. Exp Cell Res 296, 12–20.[CrossRef]
    [Google Scholar]
  13. Fasken, M. B. & Corbett, A. H. ( 2005; ). Process or perish: quality control in mRNA biogenesis. Nat Struct Mol Biol 12, 482–488.[CrossRef]
    [Google Scholar]
  14. Fontoura, B. M., Faria, P. A. & Nussenzveig, D. R. ( 2005; ). Viral interactions with the nuclear transport machinery: discovering and disrupting pathways. IUBMB Life 57, 65–72.[CrossRef]
    [Google Scholar]
  15. Fraser, N. W., Sehgal, P. B. & Darnell, J. E. ( 1978; ). DRB-induced premature termination of late adenovirus transcription. Nature 272, 590–593.[CrossRef]
    [Google Scholar]
  16. Hao, L., Sakurai, A., Watanabe, T., Sorensen, E., Nidom, C. A., Newton, M. A., Ahlquist, P. & Kawaoka, Y. ( 2008; ). Drosophila RNAi screen identifies host genes important for influenza virus replication. Nature 454, 890–893.[CrossRef]
    [Google Scholar]
  17. Harman, A., Browne, H. & Minson, T. ( 2002; ). The transmembrane domain and cytoplasmic tail of herpes simplex virus type 1 glycoprotein H play a role in membrane fusion. J Virol 76, 10708–10716.[CrossRef]
    [Google Scholar]
  18. Hatada, E., Hasegawa, M., Mukaigawa, J., Shimizu, K. & Fukuda, R. ( 1989; ). Control of influenza virus gene expression: quantitative analysis of each viral RNA species in infected cells. J Biochem 105, 537–546.
    [Google Scholar]
  19. Hautbergue, G. M., Hung, M. L., Golovanov, A. P., Lian, L. Y. & Wilson, S. A. ( 2008; ). Mutually exclusive interactions drive handover of mRNA from export adaptors to TAP. Proc Natl Acad Sci U S A 105, 5154–5159.[CrossRef]
    [Google Scholar]
  20. Hautbergue, G. M., Hung, M. L., Walsh, M. J., Snijders, A. P., Chang, C. T., Jones, R., Ponting, C. P., Dickman, M. J. & Wilson, S. A. ( 2009; ). UIF, a new mRNA export adaptor that works together with REF/ALY, requires FACT for recruitment to mRNA. Current Biology 19, 1918–1924.[CrossRef]
    [Google Scholar]
  21. Howe, K. J. ( 2002; ). RNA polymerase II conducts a symphony of pre-mRNA processing activities. Biochim Biophys Acta 1577, 308–324.[CrossRef]
    [Google Scholar]
  22. Huang, S., Deerinck, T. J., Ellisman, M. H. & Spector, D. L. ( 1994; ). In vivo analysis of the stability and transport of nuclear poly(A)+ RNA. J Cell Biol 126, 877–899.[CrossRef]
    [Google Scholar]
  23. Huang, Y., Gattoni, R., Stevenin, J. & Steitz, J. A. ( 2003; ). SR splicing factors serve as adapter proteins for TAP-dependent mRNA export. Mol Cell 11, 837–843.[CrossRef]
    [Google Scholar]
  24. Hutchinson, E. C., Curran, M. D., Read, E. K., Gog, J. R. & Digard, P. ( 2008; ). Mutational analysis of cis-acting RNA signals in segment 7 of influenza A virus. J Virol 82, 11869–11879.[CrossRef]
    [Google Scholar]
  25. Hutten, S. & Kehlenbach, R. H. ( 2007; ). CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol 17, 193–201.[CrossRef]
    [Google Scholar]
  26. Inglis, S. C. & Mahy, B. W. ( 1979; ). Polypeptides specified by the influenza virus genome. 3. Control of synthesis in infected cells. Virology 95, 154–164.[CrossRef]
    [Google Scholar]
  27. Josset, L., Frobert, E. & Rosa-Calatrava, M. ( 2008; ). Influenza A replication and host nuclear compartments: many changes and many questions. J Clin Virol 43, 381–390.[CrossRef]
    [Google Scholar]
  28. Lamb, R. A. & Horvath, C. M. ( 1991; ). Diversity of coding strategies in influenza viruses. Trends Genet 7, 261–266.[CrossRef]
    [Google Scholar]
  29. Lamb, R. A., Etkind, P. R. & Choppin, P. W. ( 1978; ). Evidence for a ninth influenza viral polypeptide. Virology 91, 60–78.[CrossRef]
    [Google Scholar]
  30. Loucaides, E. M., von Kirchbach, J. C., Foeglein, A., Sharps, J., Fodor, E. & Digard, P. ( 2009; ). Nuclear dynamics of influenza A virus ribonucleoproteins revealed by live-cell imaging studies. Virology 394, 154–163.[CrossRef]
    [Google Scholar]
  31. Masuda, S., Das, R., Cheng, H., Hurt, E., Dorman, N. & Reed, R. ( 2005; ). Recruitment of the human TREX complex to mRNA during splicing. Genes Dev 19, 1512–1517.[CrossRef]
    [Google Scholar]
  32. Mayer, D., Molawi, K., Martinez-Sobrido, L., Ghanem, A., Thomas, S., Baginsky, S., Grossmann, J., Garcia-Sastre, A. & Schwemmle, M. ( 2007; ). Identification of cellular interaction partners of the influenza virus ribonucleoprotein complex and polymerase complex using proteomic-based approaches. J Proteome Res 6, 672–682.[CrossRef]
    [Google Scholar]
  33. Meignin, C. & Davis, I. ( 2008; ). UAP56 RNA helicase is required for axis specification and cytoplasmic mRNA localization in Drosophila. Dev Biol 315, 89–98.[CrossRef]
    [Google Scholar]
  34. Momose, F., Basler, C. F., O'Neill, R. E., Iwamatsu, A., Palese, P. & Nagata, K. ( 2001; ). Cellular splicing factor RAF-2p48/NPI-5/BAT1/UAP56 interacts with the influenza virus nucleoprotein and enhances viral RNA synthesis. J Virol 75, 1899–1908.[CrossRef]
    [Google Scholar]
  35. Mullin, A. E., Dalton, R. M., Amorim, M. J., Elton, D. & Digard, P. ( 2004; ). Increased amounts of the influenza virus nucleoprotein do not promote higher levels of viral genome replication. J Gen Virol 85, 3689–3698.[CrossRef]
    [Google Scholar]
  36. Neumann, G., Castrucci, M. R. & Kawaoka, Y. ( 1997; ). Nuclear import and export of influenza virus nucleoprotein. J Virol 71, 9690–9700.
    [Google Scholar]
  37. Neumann, G., Brownlee, G. G., Fodor, E. & Kawaoka, Y. ( 2004; ). Orthomyxovirus replication, transcription, and polyadenylation. Curr Top Microbiol Immunol 283, 121–143.
    [Google Scholar]
  38. Nojima, T., Hirose, T., Kimura, H. & Hagiwara, M. ( 2007; ). The interaction between cap-binding complex and RNA export factor is required for intronless mRNA export. J Biol Chem 282, 15645–15651.[CrossRef]
    [Google Scholar]
  39. Noton, S. L., Medcalf, E., Fisher, D., Mullin, A. E., Elton, D. & Digard, P. ( 2007; ). Identification of the domains of the influenza A virus M1 matrix protein required for NP binding, oligomerization and incorporation into virions. J Gen Virol 88, 2280–2290.[CrossRef]
    [Google Scholar]
  40. Rameix-Welti, M. A., Tomoiu, A., Dos Santos Afonso, E., van der Werf, S. & Naffakh, N. ( 2009; ). Avian influenza A virus polymerase association with nucleoprotein, but not polymerase assembly, is impaired in human cells during the course of infection. J Virol 83, 1320–1331.[CrossRef]
    [Google Scholar]
  41. Satterly, N., Tsai, P. L., van Deursen, J., Nussenzveig, D. R., Wang, Y., Faria, P. A., Levay, A., Levy, D. E. & Fontoura, B. M. ( 2007; ). Influenza virus targets the mRNA export machinery and the nuclear pore complex. Proc Natl Acad Sci U S A 104, 1853–1858.[CrossRef]
    [Google Scholar]
  42. Schneider, J. & Wolff, T. ( 2009; ). Nuclear functions of the influenza A and B viruses NS1 proteins: do they play a role in viral mRNA export? Vaccine 27, 6312–6316.[CrossRef]
    [Google Scholar]
  43. Shih, S. R. & Krug, R. M. ( 1996a; ). Novel exploitation of a nuclear function by influenza virus: the cellular SF2/ASF splicing factor controls the amount of the essential viral M2 ion channel protein in infected cells. EMBO J 15, 5415–5427.
    [Google Scholar]
  44. Shih, S. R. & Krug, R. M. ( 1996b; ). Surprising function of the three influenza viral polymerase proteins: selective protection of viral mRNAs against the cap-snatching reaction catalyzed by the same polymerase proteins. Virology 226, 430–435.[CrossRef]
    [Google Scholar]
  45. Shih, S. R., Nemeroff, M. E. & Krug, R. M. ( 1995; ). The choice of alternative 5′ splice sites in influenza virus M1 mRNA is regulated by the viral polymerase complex. Proc Natl Acad Sci U S A 92, 6324–6328.[CrossRef]
    [Google Scholar]
  46. Skehel, J. J. ( 1972; ). Polypeptide synthesis in influenza virus-infected cells. Virology 49, 23–36.[CrossRef]
    [Google Scholar]
  47. Stamminger, T. ( 2008; ). Interactions of human cytomegalovirus proteins with the nuclear transport machinery. Curr Top Microbiol Immunol 325, 167–185.
    [Google Scholar]
  48. Strasser, K., Masuda, S., Mason, P., Pfannstiel, J., Oppizzi, M., Rodriguez-Navarro, S., Rondon, A. G., Aguilera, A., Struhl, K. & other authors ( 2002; ). TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417, 304–308.[CrossRef]
    [Google Scholar]
  49. Tamm, I., Kikuchi, T., Darnell, J. E., Jr & Salditt-Georgieff, M. ( 1980; ). Short capped hnRNA precursor chains in HeLa cells: continued synthesis in the presence of 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole. Biochemistry 19, 2743–2748.[CrossRef]
    [Google Scholar]
  50. Tamm, I., Sehgal, P. B., Lamb, R. A. & Goldberg, A. R. ( 1984; ). Halogenated ribofuranosylbenzimidazoles. In Antiviral Drugs and Interferon: the Molecular Basis of their Activity, pp. 101–180. Edited by Y. Becker. New York: Martinus Nijhoff.
  51. Taniguchi, I. & Ohno, M. ( 2008; ). ATP-dependent recruitment of export factor Aly/REF onto intronless mRNAs by RNA helicase UAP56. Mol Cell Biol 28, 601–608.[CrossRef]
    [Google Scholar]
  52. Tokunaga, K., Shibuya, T., Ishihama, Y., Tadakuma, H., Ide, M., Yoshida, M., Funatsu, T., Ohshima, Y. & Tani, T. ( 2006; ). Nucleocytoplasmic transport of fluorescent mRNA in living mammalian cells: nuclear mRNA export is coupled to ongoing gene transcription. Genes Cells 11, 305–317.[CrossRef]
    [Google Scholar]
  53. Vogel, U., Kunerl, M. & Scholtissek, C. ( 1994; ). Influenza A virus late mRNAs are specifically retained in the nucleus in the presence of a methyltransferase or a protein kinase inhibitor. Virology 198, 227–233.[CrossRef]
    [Google Scholar]
  54. Wang, W., Cui, Z. Q., Han, H., Zhang, Z. P., Wei, H. P., Zhou, Y. F., Chen, Z. & Zhang, X. E. ( 2008; ). Imaging and characterizing influenza A virus mRNA transport in living cells. Nucleic Acids Res 36, 4913–4928.[CrossRef]
    [Google Scholar]
  55. Whittaker, G., Bui, M. & Helenius, A. ( 1996; ). Nuclear trafficking of influenza virus ribonuleoproteins in heterokaryons. J Virol 70, 2743–2756.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.018564-0
Loading
/content/journal/jgv/10.1099/vir.0.018564-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error