1887

Abstract

Previous studies have documented that, in the presence of the mutagenic base analogue 5-fluorouracil (FU), lymphocytic choriomeningitis virus (LCMV) that persisted in BHK-21 cells decreased its infectivity to a larger extent than intracellular viral RNA levels, prior to virus extinction. This observation, together with simulations, led to the proposal of the lethal defection model of virus extinction. This model suggests the participation of defective-interfering genomes in the loss of infectivity by increased mutagenesis. Since LCMV naturally produces defective-interfering particles, it was important to show that a capacity to interfere is produced in association with FU treatment. Here, we document that BHK-21 cells persistently infected with LCMV grown in the presence of FU, but not in its absence, generated an interfering activity that suppressed LCMV infectivity. Interference was specific for LCMV and was sensitive to UV irradiation and its activity was dose- and time-dependent. The interfering preparations produced positive LCMV immunofluorescence and viral particles seen by electron microscopy when used to infect cells, despite some preparations being devoid of detectable infectivity. Interference did not involve significant increases of mutant spectrum complexity, as predicted by the lethal defection model. The results provide support for a specific interference associated with LCMV when the virus replicates in the presence of FU. The excess of interference relative to that observed in the absence of FU is necessary for LCMV extinction.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.017053-0
2010-04-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/4/990.html?itemId=/content/journal/jgv/10.1099/vir.0.017053-0&mimeType=html&fmt=ahah

References

  1. Agudo, R., Arias, A., Pariente, N., Perales, C., Escarmis, C., Jorge, A., Marina, A. & Domingo, E. ( 2008; ). Molecular characterization of a dual inhibitory and mutagenic activity of 5-fluorouridine triphosphate on viral RNA synthesis. Implications for lethal mutagenesis. J Mol Biol 382, 652–666.[CrossRef]
    [Google Scholar]
  2. Airaksinen, A., Pariente, N., Menendez-Arias, L. & Domingo, E. ( 2003; ). Curing of foot-and-mouth disease virus from persistently infected cells by ribavirin involves enhanced mutagenesis. Virology 311, 339–349.[CrossRef]
    [Google Scholar]
  3. Anderson, J. P., Daifuku, R. & Loeb, L. A. ( 2004; ). Viral error catastrophe by mutagenic nucleosides. Annu Rev Microbiol 58, 183–205.[CrossRef]
    [Google Scholar]
  4. Anglana, M., Apiou, F., Bensimon, A. & Debatisse, M. ( 2003; ). Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell 114, 385–394.[CrossRef]
    [Google Scholar]
  5. Biebricher, C. K. & Eigen, M. ( 2005; ). The error threshold. Virus Res 107, 117–127.[CrossRef]
    [Google Scholar]
  6. Buchmeier, M. J., Lewicki, H. A., Tomori, O. & Oldstone, M. B. ( 1981; ). Monoclonal antibodies to lymphocytic choriomeningitis and pichinde viruses: generation, characterization, and cross-reactivity with other arenaviruses. Virology 113, 73–85.[CrossRef]
    [Google Scholar]
  7. Buchmeier, M. J., de la Torre, J. C. & Peters, C. J. ( 2007; ). Arenaviridae: the viruses and their replication. In Fields Virology, 5th edn, pp. 1791–1827. Edited by D. M. Knipe & P. M. Howley. Philadelphia: Lippincott Williams & Wilkins.
  8. Chumakov, K. M., Powers, L. B., Noonan, K. E., Roninson, I. B. & Levenbook, I. S. ( 1991; ). Correlation between amount of virus with altered nucleotide sequence and the monkey test for acceptability of oral poliovirus vaccine. Proc Natl Acad Sci U S A 88, 199–203.[CrossRef]
    [Google Scholar]
  9. Coffin, J. M. ( 1995; ). HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267, 483–489.[CrossRef]
    [Google Scholar]
  10. Crotty, S., Cameron, C. E. & Andino, R. ( 2001; ). RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci U S A 98, 6895–6900.[CrossRef]
    [Google Scholar]
  11. Crowder, S. & Kirkegaard, K. ( 2005; ). Trans-dominant inhibition of RNA viral replication can slow growth of drug-resistant viruses. Nat Genet 37, 701–709.[CrossRef]
    [Google Scholar]
  12. de la Torre, J. C. & Holland, J. J. ( 1990; ). RNA virus quasispecies populations can suppress vastly superior mutant progeny. J Virol 64, 6278–6281.
    [Google Scholar]
  13. Domingo, E. ( 2005; ). Virus entry into error catastrophe as a new antiviral strategy. Virus Res 107, 115–228.[CrossRef]
    [Google Scholar]
  14. Domingo, E. (editor) ( 2006; ).. Quasispecies: Concept and Implications for Virology (Current Topics in Microbiology and Immunology, vol. 299). Berlin & London: Springer.
  15. Domingo, E., Dávila, M. & Ortín, J. ( 1980; ). Nucleotide sequence heterogeneity of the RNA from a natural population of foot-and-mouth-disease virus. Gene 11, 333–346.[CrossRef]
    [Google Scholar]
  16. Domingo, E., Grande-Perez, A. & Martin, V. ( 2008a; ). Future prospects for the treatment of rapidly evolving viral pathogens: insights from evolutionary biology. Expert Opin Biol Ther 8, 1455–1460.[CrossRef]
    [Google Scholar]
  17. Domingo, E., Parrish, C. & Holland, J. J. E. ( 2008b; ). Origin and Evolution of Viruses, 2nd edn. Oxford: Elsevier.
  18. Edgar, R. C. ( 2004; ). muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–1797.[CrossRef]
    [Google Scholar]
  19. Eigen, M. ( 1971; ). Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523.[CrossRef]
    [Google Scholar]
  20. Eigen, M. ( 2002; ). Error catastrophe and antiviral strategy. Proc Natl Acad Sci U S A 99, 13374–13376.[CrossRef]
    [Google Scholar]
  21. Eigen, M. & Schuster, P. ( 1979; ). The Hypercycle: a Principle of Natural Self-Organization. Berlin: Springer.
  22. Eigen, M., McCaskill, J. & Schuster, P. ( 1988; ). Molecular quasi-species. J Phys Chem 92, 6881–6891.[CrossRef]
    [Google Scholar]
  23. Fuller-Pace, F. V. & Southern, P. J. ( 1989; ). Detection of virus-specific RNA-dependent RNA polymerase activity in extracts from cells infected with lymphocytic choriomeningitis virus: in vitro synthesis of full-length viral RNA species. J Virol 63, 1938–1944.
    [Google Scholar]
  24. González-López, C., Arias, A., Pariente, N., Gómez-Mariano, G. & Domingo, E. ( 2004; ). Preextinction viral RNA can interfere with infectivity. J Virol 78, 3319–3324.[CrossRef]
    [Google Scholar]
  25. Graci, J. D. & Cameron, C. E. ( 2004; ). Challenges for the development of ribonucleoside analogues as inducers of error catastrophe. Antivir Chem Chemother 15, 1–13.[CrossRef]
    [Google Scholar]
  26. Grande-Pérez, A., Sierra, S., Castro, M. G., Domingo, E. & Lowenstein, P. R. ( 2002; ). Molecular indetermination in the transition to error catastrophe: systematic elimination of lymphocytic choriomeningitis virus through mutagenesis does not correlate linearly with large increases in mutant spectrum complexity. Proc Natl Acad Sci U S A 99, 12938–12943.[CrossRef]
    [Google Scholar]
  27. Grande-Pérez, A., Gómez-Mariano, G., Lowenstein, P. R. & Domingo, E. ( 2005a; ). Mutagenesis-induced, large fitness variations with an invariant arenavirus consensus genomic nucleotide sequence. J Virol 79, 10451–10459.[CrossRef]
    [Google Scholar]
  28. Grande-Pérez, A., Lazaro, E., Lowenstein, P., Domingo, E. & Manrubia, S. C. ( 2005b; ). Suppression of viral infectivity through lethal defection. Proc Natl Acad Sci U S A 102, 4448–4452.[CrossRef]
    [Google Scholar]
  29. Holland, J. J. ( 1990; ). Defective viral genomes. In Fields Virology, 2nd edn, pp. 151–165. Edited by B. M. Fields & D. M. Knipe. New York: Raven Press.
  30. Holland, J., Spindler, K., Horodyski, F., Grabau, E., Nichol, S. & VandePol, S. ( 1982; ). Rapid evolution of RNA genomes. Science 215, 1577–1585.[CrossRef]
    [Google Scholar]
  31. Holland, J. J., Domingo, E., de la Torre, J. C. & Steinhauer, D. A. ( 1990; ). Mutation frequencies at defined single codon sites in vesicular stomatitis virus and poliovirus can be increased only slightly by chemical mutagenesis. J Virol 64, 3960–3962.
    [Google Scholar]
  32. Iranzo, J. & Manrubia, S. C. ( 2009; ). Stochastic extinction of viral infectivity through the action of defectors. Europhys Lett 85, 18001–18005.[CrossRef]
    [Google Scholar]
  33. Kunz, B. A., Kohalmi, S. E., Kunkel, T. A., Mathews, C. K., McIntosh, E. M. & Reidy, J. A. ( 1994; ). International Commission for Protection Against Environmental Mutagens and Carcinogens. Deoxyribonucleoside triphosphate levels: a critical factor in the maintenance of genetic stability. Mutat Res 318, 1–64.[CrossRef]
    [Google Scholar]
  34. Lazzarini, R. A., Keene, J. D. & Schubert, M. ( 1981; ). The origins of defective interfering particles of the negative-strand RNA viruses. Cell 26, 145–154.[CrossRef]
    [Google Scholar]
  35. Lee, K. J., Novella, I. S., Teng, M. N., Oldstone, M. B. & de La Torre, J. C. ( 2000; ). NP and L proteins of lymphocytic choriomeningitis virus (LCMV) are sufficient for efficient transcription and replication of LCMV genomic RNA analogs. J Virol 74, 3470–3477.[CrossRef]
    [Google Scholar]
  36. Lopez, N., Jacamo, R. & Franze-Fernandez, M. T. ( 2001; ). Transcription and RNA replication of tacaribe virus genome and antigenome analogs require N and L proteins: Z protein is an inhibitor of these processes. J Virol 75, 12241–12251.[CrossRef]
    [Google Scholar]
  37. Macher, A. M. & Wolfe, M. S. ( 2006; ). Historical Lassa fever reports and 30-year clinical update. Emerg Infect Dis 12, 835–837.[CrossRef]
    [Google Scholar]
  38. Martin, V. & Domingo, E. ( 2008; ). Influence of the mutant spectrum in viral evolution: focused selection of antigenic variants in a reconstructed viral quasispecies. Mol Biol Evol 25, 1544–1554.[CrossRef]
    [Google Scholar]
  39. Martin, V., Grande-Perez, A. & Domingo, E. ( 2008; ). No evidence of selection for mutational robustness during lethal mutagenesis of lymphocytic choriomeningitis virus. Virology 378, 185–192.[CrossRef]
    [Google Scholar]
  40. Mateu, M. G., Rocha, E., Vicente, O., Vayreda, F., Navalpotro, C., Andreu, D., Pedroso, E., Giralt, E., Enjuanes, L. & Domingo, E. ( 1987; ). Reactivity with monoclonal antibodies of viruses from an episode of foot-and-mouth disease. Virus Res 8, 261–274.[CrossRef]
    [Google Scholar]
  41. Mathews, C. K. ( 2006; ). DNA precursor metabolism and genomic stability. FASEB J 20, 1300–1314.[CrossRef]
    [Google Scholar]
  42. Meyer, B. J. & Southern, P. J. ( 1997; ). A novel type of defective viral genome suggests a unique strategy to establish and maintain persistent lymphocytic choriomeningitis virus infections. J Virol 71, 6757–6764.
    [Google Scholar]
  43. Meyer, B. J., de la Torre, J. C. & Southern, P. J. ( 2002; ). Arenaviruses: genomic RNAs, transcription, and replication. Curr Top Microbiol Immunol 262, 139–157.
    [Google Scholar]
  44. Nájera, I., Holguín, A., Quiñones-Mateu, M. E., Muñoz-Fernández, M. A., Nájera, R., López-Galíndez, C. & Domingo, E. ( 1995; ). Pol gene quasispecies of human immunodeficiency virus: mutations associated with drug resistance in virus from patients undergoing no drug therapy. J Virol 69, 23–31.
    [Google Scholar]
  45. Nijhuis, M., van Maarseveen, N. M. & Boucher, C. A. B. ( 2009; ). Antiviral resistance and impact on viral replication capacity: evolution of viruses under antiviral pressure occurs in three phases. In Antiviral Strategies (Handbook of Experimental Pharmacology, vol. 189), pp. 299–320. Edited by H.-G. Krausslich & R. Bartenschlager. Berlin & Heidelberg: Springer.
  46. Ojosnegros, S., Agudo, R., Sierra, M., Briones, C., Sierra, S., Gonzalez-Lopez, C., Domingo, E. & Cristina, J. ( 2008; ). Topology of evolving, mutagenized viral populations: quasispecies expansion, compression, and operation of negative selection. BMC Evol Biol 8, 207 [CrossRef]
    [Google Scholar]
  47. Palma, E. L. & Huang, A. S. ( 1974; ). Cyclic production of vesicular stomatitis virus caused by defective interfering particles. J Infect Dis 129, 402–410.[CrossRef]
    [Google Scholar]
  48. Pariente, N., Sierra, S., Lowenstein, P. R. & Domingo, E. ( 2001; ). Efficient virus extinction by combinations of a mutagen and antiviral inhibitors. J Virol 75, 9723–9730.[CrossRef]
    [Google Scholar]
  49. Pariente, N., Airaksinen, A. & Domingo, E. ( 2003; ). Mutagenesis versus inhibition in the efficiency of extinction of foot-and-mouth disease virus. J Virol 77, 7131–7138.[CrossRef]
    [Google Scholar]
  50. Perales, C., Mateo, R., Mateu, M. G. & Domingo, E. ( 2007; ). Insights into RNA virus mutant spectrum and lethal mutagenesis events: replicative interference and complementation by multiple point mutants. J Mol Biol 369, 985–1000.[CrossRef]
    [Google Scholar]
  51. Perales, C., Agudo, R., Tejero, H., Manrubia, S. C. & Domingo, E. ( 2009; ). Benefits of sequential inhibitor-mutagen lethal mutagenesis treatments. PLoS Pathog 5, e1000658 [CrossRef]
    [Google Scholar]
  52. Pérez, M., Craven, R. C. & de la Torre, J. C. ( 2003; ). The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. Proc Natl Acad Sci U S A 100, 12978–12983.[CrossRef]
    [Google Scholar]
  53. Peters, C. J. ( 2002; ). Human infection with arenaviruses in the Americas. Curr Top Microbiol Immunol 262, 65–74.
    [Google Scholar]
  54. Pogolotti, A. L., Jr & Santi, D. V. ( 1982; ). High-pressure liquid chromatography – ultraviolet analysis of intracellular nucleotides. Anal Biochem 126, 335–345.[CrossRef]
    [Google Scholar]
  55. Polson, A. G. & Bass, B. L. ( 1994; ). Preferential selection of adenosines for modification by double-stranded RNA adenosine deaminase. EMBO J 13, 5701–5711.
    [Google Scholar]
  56. Popescu, M., Schaefer, H. & Lehmann-Grube, F. ( 1976; ). Homologous interference of lymphocytic choriomeningitis virus: detection and measurement of interference focus-forming units. J Virol 20, 1–8.
    [Google Scholar]
  57. Roux, L., Simon, A. E. & Holland, J. J. ( 1991; ). Effects of defective interfering viruses on virus replication and pathogenesis in vitro and in vivo. Adv Virus Res 40, 181–211.
    [Google Scholar]
  58. Ruiz-Jarabo, C. M., Ly, C., Domingo, E. & de la Torre, J. C. ( 2003; ). Lethal mutagenesis of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). Virology 308, 37–47.[CrossRef]
    [Google Scholar]
  59. Salvato, M. S., Schweighofer, K. J., Burns, J. & Shimomaye, E. M. ( 1992; ). Biochemical and immunological evidence that the 11 kDa zinc-binding protein of lymphocytic choriomeningitis virus is a structural component of the virus. Virus Res 22, 185–198.[CrossRef]
    [Google Scholar]
  60. Sevilla, N., Domingo, E. & de la Torre, J. C. ( 2002; ). Contribution of LCMV towards deciphering biology of quasispecies in vivo. Curr Top Microbiol Immunol 263, 197–220.
    [Google Scholar]
  61. Sierra, S., Dávila, M., Lowenstein, P. R. & Domingo, E. ( 2000; ). Response of foot-and-mouth disease virus to increased mutagenesis. Influence of viral load and fitness in loss of infectivity. J Virol 74, 8316–8323.[CrossRef]
    [Google Scholar]
  62. Singh, M. K., Fuller-Pace, F. V., Buchmeier, M. J. & Southern, P. J. ( 1987; ). Analysis of the genomic L RNA segment from lymphocytic choriomeningitis virus. Virology 161, 448–456.[CrossRef]
    [Google Scholar]
  63. Sobrino, F., Dávila, M., Ortín, J. & Domingo, E. ( 1983; ). Multiple genetic variants arise in the course of replication of foot-and-mouth disease virus in cell culture. Virology 128, 310–318.[CrossRef]
    [Google Scholar]
  64. Teng, M. N., Oldstone, M. B. & de la Torre, J. C. ( 1996; ). Suppression of lymphocytic choriomeningitis virus-induced growth hormone deficiency syndrome by disease-negative virus variants. Virology 223, 113–119.[CrossRef]
    [Google Scholar]
  65. Volkenstein, M. V. ( 1994; ). Physical Approaches to Biological Evolution. Berlin: Springer.
  66. Weber, E. L. & Buchmeier, M. J. ( 1988; ). Fine mapping of a peptide sequence containing an antigenic site conserved among arenaviruses. Virology 164, 30–38.[CrossRef]
    [Google Scholar]
  67. Welsh, R. M., Jr & Buchmeier, M. J. ( 1979; ). Protein analysis of defective interfering lymphocytic choriomeningitis virus and persistently infected cells. Virology 96, 503–515.[CrossRef]
    [Google Scholar]
  68. Welsh, R. M. & Oldstone, M. B. ( 1977; ). Inhibition of immunologic injury of cultured cells infected with lymphocytic choriomeningitis virus: role of defective interfering virus in regulating viral antigenic expression. J Exp Med 145, 1449–1468.[CrossRef]
    [Google Scholar]
  69. Welsh, R. M. & Pfau, C. J. ( 1972; ). Determinants of lymphocytic choriomeningitis interference. J Gen Virol 14, 177–187.[CrossRef]
    [Google Scholar]
  70. Welsh, R. M., O'Connell, C. M. & Pfau, C. J. ( 1972; ). Properties of defective lymphocytic choriomeningitis virus. J Gen Virol 17, 355–359.[CrossRef]
    [Google Scholar]
  71. Zahn, R. C., Schelp, I., Utermohlen, O. & von Laer, D. ( 2007; ). A-to-G hypermutation in the genome of lymphocytic choriomeningitis virus. J Virol 81, 457–464.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.017053-0
Loading
/content/journal/jgv/10.1099/vir.0.017053-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error