1887

Abstract

It is assumed that an effective human immunodeficiency virus type 1 (HIV-1) vaccine should be capable of eliciting neutralizing antibodies. However, even the best antibodies known to date lack neutralizing ability against a significant proportion of primary HIV-1 variants and, despite great efforts, still no immunogen is available that can elicit humoral immunity which is protective against infection or disease progression. We tested sera from 35 participants in the Amsterdam Cohort Studies on HIV-1 infection, who were all infected with HIV-1 subtype B and therapy-naïve at the time of sampling, for neutralizing activity against a panel of 23 tier 2–3 HIV-1 variants, with a minimum of five HIV-1 variants per subtype (A, B, C and D). Strong cross-clade neutralizing activity was detected in sera from seven individuals. Strikingly, sera from 22 of 35 individuals (63 %) neutralized three or more of the six tier 2–3 HIV-1 subtype B viruses in the panel. There was a strong correlation between neutralization titre and breadth in serum. Indeed, the IC of sera with strong cross-clade neutralizing activity was significantly higher than the IC of sera with cross-subtype B activity, which, in turn, had a higher IC than sera with the lowest neutralization breadth. These results imply that humoral immunity, at least in HIV-1 subtype B-infected individuals, is often subtype-specific rather than strain-specific and that the breadth of neutralization is correlated with the titre of neutralizing activity in serum. Considering the difficulties in designing a vaccine that is capable of eliciting cross-clade neutralizing activity, subtype-specific vaccines may be explored as an interesting alternative.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.015693-0
2010-01-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/1/250.html?itemId=/content/journal/jgv/10.1099/vir.0.015693-0&mimeType=html&fmt=ahah

References

  1. Binley, J. M., Wrin, T., Korber, B., Zwick, M. B., Wang, M., Chappey, C., Stiegler, G., Kunert, R., Zolla-Pazner, S. & other authors ( 2004; ). Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies. J Virol 78, 13232–13252.[CrossRef]
    [Google Scholar]
  2. Brown, B. K., Wieczorek, L., Sanders-Buell, E., Rosa, B. A., Robb, M. L., Birx, D. L., Michael, N. L., McCutchan, F. E. & Polonis, V. R. ( 2008; ). Cross-clade neutralization patterns among HIV-1 strains from the six major clades of the pandemic evaluated and compared in two different models. Virology 375, 529–538.[CrossRef]
    [Google Scholar]
  3. Bunnik, E. M., Pisas, L., van Nuenen, A. C. & Schuitemaker, H. ( 2008; ). Autologous neutralizing humoral immunity and evolution of the viral envelope in the course of subtype B human immunodeficiency virus type 1 infection. J Virol 82, 7932–7941.[CrossRef]
    [Google Scholar]
  4. Burton, D. R., Desrosiers, R. C., Doms, R. W., Koff, W. C., Kwong, P. D., Moore, J. P., Nabel, G. J., Sodroski, J., Wilson, I. A. & other authors ( 2004; ). HIV vaccine design and the neutralizing antibody problem. Nat Immunol 5, 233–236.[CrossRef]
    [Google Scholar]
  5. Conley, A. J., Gorny, M. K., Kessler, J. A., Boots, L. J., Ossorio-Castro, M., Koenig, S., Lineberger, D. W., Emini, E. A., Williams, C. & other authors ( 1994; ). Neutralization of primary human immunodeficiency virus type 1 isolates by the broadly reactive anti-V3 monoclonal antibody, 447–52D. J Virol 68, 6994–7000.
    [Google Scholar]
  6. Dhillon, A. K., Donners, H., Pantophlet, R., Johnson, W. E., Decker, J. M., Shaw, G. M., Lee, F. H., Richman, D. D., Doms, R. W. & other authors ( 2007; ). Dissecting the neutralizing antibody specificities of broadly neutralizing sera from human immunodeficiency virus type 1-infected donors. J Virol 81, 6548–6562.[CrossRef]
    [Google Scholar]
  7. Doria-Rose, N. A., Klein, R. M., Manion, M. M., O'Dell, S., Phogat, A., Chakrabarti, B., Hallahan, C. W., Migueles, S. A., Wrammert, J. & other authors ( 2009; ). Frequency and phenotype of human immunodeficiency virus envelope-specific B cells from patients with broadly cross-neutralizing antibodies. J Virol 83, 188–199.[CrossRef]
    [Google Scholar]
  8. Gaschen, B., Taylor, J., Yusim, K., Foley, B., Gao, F., Lang, D., Novitsky, V., Haynes, B., Hahn, B. H. & other authors ( 2002; ). Diversity considerations in HIV-1 vaccine selection. Science 296, 2354–2360.[CrossRef]
    [Google Scholar]
  9. Gray, E. S., Meyers, T., Gray, G., Montefiori, D. C. & Morris, L. ( 2006; ). Insensitivity of paediatric HIV-1 subtype C viruses to broadly neutralising monoclonal antibodies raised against subtype B. PLoS Med 3, e255 [CrossRef]
    [Google Scholar]
  10. Guan, Y., Sajadi, M. M., Kamin-Lewis, R., Fouts, T. R., Dimitrov, A., Zhang, Z., Redfield, R. R., DeVico, A. L., Gallo, R. C. & other authors ( 2009; ). Discordant memory B cell and circulating anti-Env antibody responses in HIV-1 infection. Proc Natl Acad Sci U S A 106, 3952–3957.[CrossRef]
    [Google Scholar]
  11. Hemelaar, J., Gouws, E., Ghys, P. D. & Osmanov, S. ( 2006; ). Global and regional distribution of HIV-1 genetic subtypes and recombinants in 2004. AIDS 20, W13–W23.[CrossRef]
    [Google Scholar]
  12. Karlsson Hedestam, G. B., Fouchier, R. A., Phogat, S., Burton, D. R., Sodroski, J. & Wyatt, R. T. ( 2008; ). The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus. Nat Rev Microbiol 6, 143–155.[CrossRef]
    [Google Scholar]
  13. Kostrikis, L. G., Cao, Y., Ngai, H., Moore, J. P. & Ho, D. D. ( 1996; ). Quantitative analysis of serum neutralization of human immunodeficiency virus type 1 from subtypes A, B, C, D, E, F, and I: lack of direct correlation between neutralization serotypes and genetic subtypes and evidence for prevalent serum-dependent infectivity enhancement. J Virol 70, 445–458.
    [Google Scholar]
  14. Labrijn, A. F., Poignard, P., Raja, A., Zwick, M. B., Delgado, K., Franti, M., Binley, J., Vivona, V., Grundner, C. & other authors ( 2003; ). Access of antibody molecules to the conserved coreceptor binding site on glycoprotein gp120 is sterically restricted on primary human immunodeficiency virus type 1. J Virol 77, 10557–10565.[CrossRef]
    [Google Scholar]
  15. Li, Y., Migueles, S. A., Welcher, B., Svehla, K., Phogat, A., Louder, M. K., Wu, X., Shaw, G. M., Connors, M. & other authors ( 2007; ). Broad HIV-1 neutralization mediated by CD4-binding site antibodies. Nat Med 13, 1032–1034.[CrossRef]
    [Google Scholar]
  16. Li, Y., Svehla, K., Louder, M. K., Wycuff, D., Phogat, S., Tang, M., Migueles, S. A., Wu, X., Phogat, A. & other authors ( 2009; ). Analysis of neutralization specificities in polyclonal sera derived from human immunodeficiency virus type 1-infected individuals. J Virol 83, 1045–1059.[CrossRef]
    [Google Scholar]
  17. Malim, M. H. & Emerman, M. ( 2001; ). HIV-1 sequence variation: drift, shift, and attenuation. Cell 104, 469–472.[CrossRef]
    [Google Scholar]
  18. Mascola, J. R., D'Souza, P., Gilbert, P., Hahn, B. H., Haigwood, N. L., Morris, L., Petropoulos, C. J., Polonis, V. R., Sarzotti, M. & other authors ( 2005; ). Recommendations for the design and use of standard virus panels to assess neutralizing antibody responses elicited by candidate human immunodeficiency virus type 1 vaccines. J Virol 79, 10103–10107.[CrossRef]
    [Google Scholar]
  19. McCutchan, F. E. ( 2000; ). Understanding the genetic diversity of HIV-1. AIDS 14 (Suppl. 3), S31–S44.[CrossRef]
    [Google Scholar]
  20. McKnight, A. & Aasa-Chapman, M. M. ( 2007; ). Clade specific neutralising vaccines for HIV: an appropriate target? Curr HIV Res 5, 554–560.[CrossRef]
    [Google Scholar]
  21. Moog, C., Fleury, H. J. A., Pellegrin, I., Kirn, A. & Aubertin, A. M. ( 1997; ). Autologous and heterologous neutralizing antibody responses following initial seroconversion in human immunodeficiency virus type 1-infected individuals. J Virol 71, 3734–3741.
    [Google Scholar]
  22. Moore, J. P., Cao, Y., Qing, L., Sattentau, Q. J., Pyati, J., Koduri, R., Robinson, J., Barbas, C. F., III, Burton, D. R. & other authors ( 1995; ). Primary isolates of human immunodeficiency virus type 1 are relatively resistant to neutralization by monoclonal antibodies to gp120, and their neutralization is not predicted by studies with monomeric gp120. J Virol 69, 101–109.
    [Google Scholar]
  23. Moore, J. P., Parren, P. W. & Burton, D. R. ( 2001; ). Genetic subtypes, humoral immunity, and human immunodeficiency virus type 1 vaccine development. J Virol 75, 5721–5729.[CrossRef]
    [Google Scholar]
  24. Pantaleo, G. & Koup, R. A. ( 2004; ). Correlates of immune protection in HIV-1 infection: what we know, what we don't know, what we should know. Nat Med 10, 806–810.[CrossRef]
    [Google Scholar]
  25. Petropoulos, C. J., Parkin, N. T., Limoli, K. L., Lie, Y. S., Wrin, T., Huang, W., Tian, H., Smith, D., Winslow, G. A. & other authors ( 2000; ). A novel phenotypic drug susceptibility assay for human immunodeficiency virus type 1. Antimicrob Agents Chemother 44, 920–928.[CrossRef]
    [Google Scholar]
  26. Piantadosi, A., Panteleeff, D., Blish, C. A., Baeten, J. M., Jaoko, W., McClelland, R. S. & Overbaugh, J. ( 2009; ). HIV-1 neutralizing antibody breadth is affected by factors early in infection, but does not influence disease progression. J Virol 83, 10269–10274.[CrossRef]
    [Google Scholar]
  27. Quakkelaar, E. D., van Alphen, F. P., Boeser-Nunnink, B. D., van Nuenen, A. C., Pantophlet, R. & Schuitemaker, H. ( 2007; ). Susceptibility of recently transmitted subtype B human immunodeficiency virus type 1 variants to broadly neutralizing antibodies. J Virol 81, 8533–8542.[CrossRef]
    [Google Scholar]
  28. Richman, D. D., Wrin, T., Little, S. J. & Petropoulos, C. J. ( 2003; ). Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc Natl Acad Sci U S A 100, 4144–4149.[CrossRef]
    [Google Scholar]
  29. Sather, D. N., Armann, J., Ching, L. K., Mavrantoni, A., Sellhorn, G., Caldwell, Z., Yu, X., Wood, B., Self, S. & other authors ( 2009; ). Factors associated with the development of cross-reactive neutralizing antibodies during human immunodeficiency virus type 1 infection. J Virol 83, 757–769.[CrossRef]
    [Google Scholar]
  30. Scheid, J. F., Mouquet, H., Feldhahn, N., Seaman, M. S., Velinzon, K., Pietzsch, J., Ott, R. G., Anthony, R. M., Zebroski, H. & other authors ( 2009; ). Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458, 636–640.[CrossRef]
    [Google Scholar]
  31. Schweighardt, B., Liu, Y., Huang, W., Chappey, C., Lie, Y. S., Petropoulos, C. J. & Wrin, T. ( 2007; ). Development of an HIV-1 reference panel of subtype B envelope clones isolated from the plasma of recently infected individuals. J Acquir Immune Defic Syndr 46, 1–11.[CrossRef]
    [Google Scholar]
  32. Shankarappa, R., Margolick, J. B., Gange, S. J., Rodrigo, A. G., Upchurch, D., Farzadegan, H., Gupta, P., Rinaldo, C. R., Learn, G. H. & other authors ( 1999; ). Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. J Virol 73, 10489–10502.
    [Google Scholar]
  33. Simek, M. D., Rida, W., Priddy, F. H., Pung, P., Carrow, E., Laufer, D. S., Lehrman, J. K., Boaz, M., Tarragona-Fiol, T. & other authors ( 2009; ). HIV-1 elite neutralizers: individuals with broad and potent neutralizing activity identified using a high throughput neutralization assay together with an analytical selection algorithm. J Virol 83, 7337–7348.[CrossRef]
    [Google Scholar]
  34. Stebbing, J. & Moyle, G. ( 2003; ). The clades of HIV: their origins and clinical significance. AIDS Rev 5, 205–213.
    [Google Scholar]
  35. Taylor, B. S., Sobieszczyk, M. E., McCutchan, F. E. & Hammer, S. M. ( 2008; ). The challenge of HIV-1 subtype diversity. N Engl J Med 358, 1590–1602.[CrossRef]
    [Google Scholar]
  36. van Gils, M. J., Euler, Z., Schweighardt, B., Wrin, T. & Schuitemaker, H. ( 2010; ). Prevalence of cross-reactive HIV-1-neutralizing activity in HIV-1-infected patients with rapid or slow disease progression. AIDS in press
    [Google Scholar]
  37. van Griensven, G. J., de Vroome, E. M., Goudsmit, J. & Coutinho, R. A. ( 1989; ). Changes in sexual behavior and the fall in incidence of HIV infection among homosexual men. BMJ 298, 218–221.[CrossRef]
    [Google Scholar]
  38. Walker, B. D. & Burton, D. R. ( 2008; ). Toward an AIDS vaccine. Science 320, 760–764.[CrossRef]
    [Google Scholar]
  39. Walker, L. M., Phogat, S. K., Chan-Hui, P. Y., Wagner, D., Phung, P., Goss, J. L., Wrin, T., Simek, M. D., Fling, S. & other authors ( 2009; ). Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326, 285–289.[CrossRef]
    [Google Scholar]
  40. Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M. & Kawaoka, Y. ( 1992; ). Evolution and ecology of influenza A viruses. Microbiol Rev 56, 152–179.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.015693-0
Loading
/content/journal/jgv/10.1099/vir.0.015693-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error