1887

Abstract

Salicylic acid (SA)-mediated resistance and RNA silencing are both important plant antiviral defence mechanisms. To investigate overlap between these resistance phenomena, we examined the ability of mutant plants lacking DICER-like (DCL) endoribonucleases 2, 3 and 4 to exhibit SA-induced defence. We found that in triple mutant plants, treatment with exogenous SA stimulated resistance to two positive-sense RNA viruses: cucumber mosaic virus and tobacco mosaic virus. We conclude that DCLs 2, 3 and 4, which are the predominant DCL endoribonucleases involved in silencing of positive-sense RNA viruses, are not required for effective SA-induced resistance to these viruses. However, the findings do not exclude RNA silencing from making a contribution to SA-mediated resistance in wild-type plants.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.014555-0
2009-12-01
2021-03-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/12/3010.html?itemId=/content/journal/jgv/10.1099/vir.0.014555-0&mimeType=html&fmt=ahah

References

  1. Alamillo J. M., Saénz P., García J. A. 2006; Salicylic acid-mediated and RNA-silencing defence mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco. Plant J 48:217–227 [CrossRef]
    [Google Scholar]
  2. Blevins T., Rajeswaran R., Shivaprasad P. V., Beknazariants D., Si-Ammour A., Park H. S., Vazquez F., Robertson D., Meins F., Jr & other authors. 2006; Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 34:6233–6246 [CrossRef]
    [Google Scholar]
  3. Bouché N., Lauressergues D., Gasciolli V., Vaucheret H. 2006; An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 25:3347–3356 [CrossRef]
    [Google Scholar]
  4. Chivasa S., Murphy A. M., Naylor M., Carr J. P. 1997; Salicylic acid interferes with tobacco mosaic virus replication via a novel salicylhydroxamic acid-sensitive mechanism. Plant Cell 9:547–557 [CrossRef]
    [Google Scholar]
  5. Deleris A., Gallego-Bartolome J., Bao J., Kasschau K. D., Carrington J. C., Voinnet O. 2006; Hierarchical action and inhibition of plant DICER-like proteins in antiviral defence. Science 313:68–71 [CrossRef]
    [Google Scholar]
  6. Gilliland A., Singh D. P., Hayward J. M., Moore C. A., Murphy A. M., York C. J., Slator J., Carr J. P. 2003; Genetic modification of alternative respiration has differential effects on antimycin A-induced versus salicylic acid-induced resistance to Tobacco mosaic virus . Plant Physiol 132:1518–1528 [CrossRef]
    [Google Scholar]
  7. Ji L. H., Ding S. W. 2001; The suppressor of transgene RNA silencing encoded by Cucumber mosaic virus interferes with salicylic acid-mediated virus resistance. Mol Plant Microbe Interact 14:715–724 [CrossRef]
    [Google Scholar]
  8. Lewsey M., Robertson F. C., Canto T., Palukaitis P., Carr J. P. 2007; Selective targeting of miRNA-regulated plant development by a viral counter-silencing protein. Plant J 50:240–252 [CrossRef]
    [Google Scholar]
  9. Lewsey M., Palukaitis P., Carr J. P. 2009a; Plant–virus interactions: defence and counter-defence. In Molecular Aspects of Plant Disease Resistance pp 134–176Edited by Parker J. Oxford, UK: Wiley-Blackwell;
    [Google Scholar]
  10. Lewsey M., Surette M., Robertson F. C., Ziebell H., Choi S. H., Ryu K. H., Canto T., Palukaitis P., Payne T. & other authors (2009b). The role of the cucumber mosaic virus 2b protein in viral movement and symptom induction. Mol Plant Microbe Interact 22:642–654 [CrossRef]
    [Google Scholar]
  11. Malamy J., Carr J. P., Klessig D. F., Raskin I. 1990; Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002–1004 [CrossRef]
    [Google Scholar]
  12. Mayers C. N., Lee K. C., Moore C. A., Wong S. M., Carr J. P. 2005; Salicylic acid-induced resistance to Cucumber mosaic virus in squash and Arabidopsis thaliana : contrasting mechanisms of induction and antiviral action. Mol Plant Microbe Interact 18:428–434 [CrossRef]
    [Google Scholar]
  13. Métraux J. P., Signer H., Ryals J., Ward E., Wyss-Benz M., Gaudin J., Raschdorf K., Schmid E., Blum W., Inverardi B. 1990; Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250:1004–1006 [CrossRef]
    [Google Scholar]
  14. Moissiard G., Voinnet O. 2006; RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis DICER-like proteins. Proc Natl Acad Sci U S A 103:19593–19598 [CrossRef]
    [Google Scholar]
  15. Murphy A. M., Carr J. P. 2002; Salicylic acid has cell-specific effects on tobacco mosaic virus replication and cell-to-cell movement. Plant Physiol 128:552–563 [CrossRef]
    [Google Scholar]
  16. Naylor M., Murphy A. M., Berry J. O., Carr J. P. 1998; Salicylic acid can induce resistance to plant virus movement. Mol Plant Microbe Interact 11:860–868 [CrossRef]
    [Google Scholar]
  17. Pagán I., Alonso-Blanco C., García-Arenal F. 2007; The relationship of within-host multiplication and virulence in a plant-virus system. PLoS One 2:e786 [CrossRef]
    [Google Scholar]
  18. Palukaitis P., Carr J. P. 2008; Plant resistance responses to viruses. J Plant Pathol 90:153–171
    [Google Scholar]
  19. Pruss G. J., Lawrence C. B., Bass T., Li Q. Q., Bowman L. H., Vance V. 2004; The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens. Virology 320:107–120 [CrossRef]
    [Google Scholar]
  20. Qu F., Ye X., Morris T. J. 2008; Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc Natl Acad Sci U S A 105:14732–14737 [CrossRef]
    [Google Scholar]
  21. Rakhshandehroo F., Takeshita M., Squires J., Palukaitis P. 2009; The influence of RNA-dependent RNA polymerase 1 on Potato virus Y infection and other antiviral response genes. Mol Plant Microbe Interact 22:1312–1318 [CrossRef]
    [Google Scholar]
  22. Ryabov E. V., Fraser G., Mayo M. A., Barker H., Taliansky M. 2001; Umbravirus gene expression helps potato leafroll virus to invade mesophyll tissues and to be transmitted mechanically between plants. Virology 286:363–372 [CrossRef]
    [Google Scholar]
  23. Shivaprasad P. V., Rajeswaran R., Blevins T., Schoelz J., Meins F., Hohn T., Pooggin M. M. 2008; The CaMV transactivator/viroplasmin interferes with RDR6-dependent trans -acting and secondary siRNA pathways in Arabidopsis . Nucleic Acids Res 36:5896–5909 [CrossRef]
    [Google Scholar]
  24. Xie Z., Fan B., Chen C., Chen Z. 2001; An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defence. Proc Natl Acad Sci U S A 98:6516–6521 [CrossRef]
    [Google Scholar]
  25. Yang S. J., Carter S. A., Cole A. B., Cheng N. H., Nelson R. S. 2004; A natural variant of a host RNA-dependent RNA polymerase is associated with increased susceptibility to viruses by Nicotiana benthamiana . Proc Natl Acad Sci U S A 101:6297–6302 [CrossRef]
    [Google Scholar]
  26. Yu D., Fan B., MacFarlane S. A., Chen Z. 2003; Analysis of the involvement of an inducible Arabidopsis RNA-dependent RNA polymerase in antiviral defence. Mol Plant Microbe Interact 16:206–216 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.014555-0
Loading
/content/journal/jgv/10.1099/vir.0.014555-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error