Epstein–Barr virus (EBV) is the causative agent of infectious mononucleosis and a risk factor for developing a variety of lymphomas and carcinomas. EBV nuclear antigen 1 (EBNA1) is the only viral protein found in all EBV-related malignancies. It plays a key role in establishing and maintaining the altered state of cells transformed with EBV. EBNA1 is required for a variety of functions, including gene regulation, replication and maintenance of the viral genome, but the regulation of EBNA1's functions is poorly understood. We demonstrate that phosphorylation affects the functions of EBNA1. By using electron-transfer dissociation tandem mass spectrometry, ten specific phosphorylated EBNA1 residues were identified. A mutant derivative preventing the phosphorylation of all ten phosphosites retained the unusually long half-life and the ability to translocate into the nucleus of wild-type EBNA1. This phosphorylation-deficient mutant, however, had a significantly reduced ability to activate transcription and to maintain EBV's plasmids in cells.


Article metrics loading...

Loading full text...

Full text loading...



  1. Aiyar, A. & Sugden, B.(1998). Fusions between Epstein–Barr viral nuclear antigen-1 of Epstein–Barr virus and the large T-antigen of simian virus 40 replicate their cognate origins. J Biol Chem 273, 33073–33081.[CrossRef] [Google Scholar]
  2. Bergendahl, V., Glaser, B. T. & Burgess, R. R.(2003). A fast Western blot procedure improved for quantitative analysis by direct fluorescence labeling of primary antibodies. J Immunol Methods 277, 117–125.[CrossRef] [Google Scholar]
  3. Coon, J. J., Syka, J. E. P., Schwartz, J. C., Shabanowitz, J. & Hunt, D. F.(2004). Anion dependence in the partitioning between proton and electron transfer in ion/ion reactions. Int J Mass Spectrom 236, 33–42.[CrossRef] [Google Scholar]
  4. Crawford, D. H.(2001). Biology and disease associations of Epstein–Barr virus. Philos Trans R Soc Lond B Biol Sci 356, 461–473.[CrossRef] [Google Scholar]
  5. Dhar, S. K., Yoshida, K., Machida, Y., Khaira, P., Chaudhuri, B., Wohlschlegel, J. A., Leffak, M., Yates, J. & Dutta, A.(2001). Replication from oriP of Epstein–Barr virus requires human ORC and is inhibited by geminin. Cell 106, 287–296.[CrossRef] [Google Scholar]
  6. Duellman, S. J. & Burgess, R. R.(2006). Overproduction in Escherichia coli and purification of Epstein–Barr virus EBNA-1. Protein Expr Purif 47, 434–440.[CrossRef] [Google Scholar]
  7. Duellman, S. J. & Burgess, R. R.(2009). Antigen-binding properties of monoclonal antibodies reactive with EBNA1 and use in immunoaffinity chromatography. . PLoS One 4, e4614[CrossRef] [Google Scholar]
  8. Fahraeus, R.(2005). Do peptides control their own birth and death? Nat Rev Mol Cell Biol 6, 263–267. [Google Scholar]
  9. Frappier, L. & O'Donnell, M.(1991a). Epstein–Barr nuclear antigen 1 mediates a DNA loop within the latent replication origin of Epstein–Barr virus. Proc Natl Acad Sci U S A 88, 10875–10879.[CrossRef] [Google Scholar]
  10. Frappier, L. & O'Donnell, M.(1991b). Overproduction, purification, and characterization of EBNA1, the origin binding protein of Epstein–Barr virus. J Biol Chem 266, 7819–7826. [Google Scholar]
  11. Freire, E., Oddo, C., Frappier, L. & de Prat-Gay, G.(2008). Kinetically driven refolding of the hyperstable EBNA1 origin DNA-binding dimeric β-barrel domain into amyloid-like spherical oligomers. Proteins 70, 450–461. [Google Scholar]
  12. Gahn, T. A. & Sugden, B.(1995). An EBNA-1-dependent enhancer acts from a distance of 10 kilobase pairs to increase expression of the Epstein–Barr virus LMP gene. J Virol 69, 2633–2636. [Google Scholar]
  13. Geer, L. Y., Markey, S. P., Kowalak, J. A., Wagner, L., Xu, M., Maynard, D. M., Yang, X., Shi, W. & Bryant, S. H.(2004). Open mass spectrometry search algorithm. J Proteome Res 3, 958–964.[CrossRef] [Google Scholar]
  14. Goldsmith, K., Bendell, L. & Frappier, L.(1993). Identification of EBNA1 amino acid sequences required for the interaction of the functional elements of the Epstein–Barr virus latent origin of DNA replication. J Virol 67, 3418–3426. [Google Scholar]
  15. Good, D. M., Wirtala, M., McAlister, G. C. & Coon, J. J.(2007). Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics 6, 1942–1951.[CrossRef] [Google Scholar]
  16. Hearing, J. C. & Levine, A. J.(1985). The Epstein–Barr virus nuclear antigen (BamHI K antigen) is a single-stranded DNA binding phosphoprotein. Virology 145, 105–116.[CrossRef] [Google Scholar]
  17. Hietakangas, V., Anckar, J., Blomster, H. A., Fujimoto, M., Palvimo, J. J., Nakai, A. & Sistonen, L.(2006). PDSM, a motif for phosphorylation-dependent SUMO modification. Proc Natl Acad Sci U S A 103, 45–50.[CrossRef] [Google Scholar]
  18. Ito, S., Ikeda, M., Kato, N., Matsumoto, A., Ishikawa, Y., Kumakubo, S. & Yanagi, K.(2000). Epstein–Barr virus nuclear antigen-1 binds to nuclear transporter karyopherin α1/NPI-1 in addition to karyopherin α2/Rch1. Virology 266, 110–119.[CrossRef] [Google Scholar]
  19. Kennedy, G. & Sugden, B.(2003). EBNA-1, a bifunctional transcriptional activator. Mol Cell Biol 23, 6901–6908.[CrossRef] [Google Scholar]
  20. Kennedy, G., Komano, J. & Sugden, B.(2003). Epstein–Barr virus provides a survival factor to Burkitt's lymphomas. Proc Natl Acad Sci U S A 100, 14269–14274.[CrossRef] [Google Scholar]
  21. Kim, A. L., Maher, M., Hayman, J. B., Ozer, J., Zerby, D., Yates, J. L. & Lieberman, P. M.(1997). An imperfect correlation between DNA replication activity of Epstein–Barr virus nuclear antigen 1 (EBNA1) and binding to the nuclear import receptor, Rch1/importin α. Virology 239, 340–351.[CrossRef] [Google Scholar]
  22. Kitamura, R., Sekimoto, T., Ito, S., Harada, S., Yamagata, H., Masai, H., Yoneda, Y. & Yanagi, K.(2006). Nuclear import of Epstein–Barr virus nuclear antigen 1 mediated by NPI-1 (importin α5) is up- and down-regulated by phosphorylation of the nuclear localization signal for which Lys379 and Arg380 are essential. J Virol 80, 1979–1991.[CrossRef] [Google Scholar]
  23. Lee, D. Y. & Sugden, B.(2008). The LMP1 oncogene of EBV activates PERK and the unfolded protein response to drive its own synthesis. Blood 111, 2280–2289.[CrossRef] [Google Scholar]
  24. Lee, M. A., Diamond, M. E. & Yates, J. L.(1999). Genetic evidence that EBNA-1 is needed for efficient, stable latent infection by Epstein–Barr virus. J Virol 73, 2974–2982. [Google Scholar]
  25. Leight, E. R. & Sugden, B.(2000). EBNA-1: a protein pivotal to latent infection by Epstein–Barr virus. Rev Med Virol 10, 83–100.[CrossRef] [Google Scholar]
  26. Leight, E. R. & Sugden, B.(2001). Establishment of an oriP replicon is dependent upon an infrequent, epigenetic event. Mol Cell Biol 21, 4149–4161.[CrossRef] [Google Scholar]
  27. Levitskaya, J., Sharipo, A., Leonchiks, A., Ciechanover, A. & Masucci, M. G.(1997). Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein–Barr virus nuclear antigen 1. Proc Natl Acad Sci U S A 94, 12616–12621.[CrossRef] [Google Scholar]
  28. Lin, D. I., Barbash, O., Kumar, K. G., Weber, J. D., Harper, J. W., Klein-Szanto, A. J., Rustgi, A., Fuchs, S. Y. & Diehl, J. A.(2006). Phosphorylation-dependent ubiquitination of cyclin D1 by the SCFFBX4-αB crystallin complex. Mol Cell 24, 355–366.[CrossRef] [Google Scholar]
  29. Lindner, S. E., Zeller, K., Schepers, A. & Sugden, B.(2008). The affinity of EBNA1 for its origin of DNA synthesis is a determinant of the origin's replicative efficiency. J Virol 82, 5693–5702.[CrossRef] [Google Scholar]
  30. Lu, K. P., Liou, Y. C. & Zhou, X. Z.(2002). Pinning down proline-directed phosphorylation signaling. Trends Cell Biol 12, 164–172.[CrossRef] [Google Scholar]
  31. Lusky, M. & Fontane, E.(1991). Formation of the complex of bovine papillomavirus E1 and E2 proteins is modulated by E2 phosphorylation and depends upon sequences within the carboxyl terminus of E1. Proc Natl Acad Sci U S A 88, 6363–6367.[CrossRef] [Google Scholar]
  32. Mackey, D. & Sugden, B.(1999). The linking regions of EBNA1 are essential for its support of replication and transcription. Mol Cell Biol 19, 3349–3359. [Google Scholar]
  33. Mackey, D., Middleton, T. & Sugden, B.(1995). Multiple regions within EBNA1 can link DNAs. J Virol 69, 6199–6208. [Google Scholar]
  34. Martin, S. E., Shabanowitz, J., Hunt, D. F. & Marto, J. A.(2000). Subfemtomole MS and MS/MS peptide sequence analysis using nano-HPLC micro-ESI Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 72, 4266–4274.[CrossRef] [Google Scholar]
  35. McAlister, G. C., Phanstiel, D., Good, D. M., Berggren, W. T. & Coon, J. J.(2007). Implementation of electron-transfer dissociation on a hybrid linear ion trap-orbitrap mass spectrometer. Anal Chem 79, 3525–3534.[CrossRef] [Google Scholar]
  36. McAlister, G. C., Berggren, W. T., Griep-Raming, J., Horning, S., Makarov, A., Phanstiel, D., Stafford, G., Swaney, D. L., Syka, J. E. & other authors(2008). A proteomics grade electron transfer dissociation-enabled hybrid linear ion trap-orbitrap mass spectrometer. J Proteome Res 7, 3127–3136.[CrossRef] [Google Scholar]
  37. McBride, A. A. & Howley, P. M.(1991). Bovine papillomavirus with a mutation in the E2 serine 301 phosphorylation site replicates at a high copy number. J Virol 65, 6528–6534. [Google Scholar]
  38. McBride, A. A., Bolen, J. B. & Howley, P. M.(1989). Phosphorylation sites of the E2 transcriptional regulatory proteins of bovine papillomavirus type 1. J Virol 63, 5076–5085. [Google Scholar]
  39. Menezes, J., Leibold, W., Klein, G. & Clements, G.(1975). Establishment and characterization of an Epstein–Barr virus (EBC)-negative lymphoblastoid B cell line (BJA-B) from an exceptional, EBV-genome-negative African Burkitt's lymphoma. Biomedicine 22, 276–284. [Google Scholar]
  40. Middleton, T. & Sugden, B.(1992). EBNA1 can link the enhancer element to the initiator element of the Epstein–Barr virus plasmid origin of DNA replication. J Virol 66, 489–495. [Google Scholar]
  41. Munz, C.(2004). Epstein–Barr virus nuclear antigen 1: from immunologically invisible to a promising T cell target. J Exp Med 199, 1301–1304.[CrossRef] [Google Scholar]
  42. Ndassa, Y. M., Orsi, C., Marto, J. A., Chen, S. & Ross, M. M.(2006). Improved immobilized metal affinity chromatography for large-scale phosphoproteomics applications. J Proteome Res 5, 2789–2799.[CrossRef] [Google Scholar]
  43. Ohara, N., Hayashi, K., Teramoto, N., Oka, T., Fujimoto, K., Yoshikawa, Y., Castanos-Velez, E., Biberfeld, P. & Akagi, T.(2000). Sequence analysis and variation of EBNA-1 in Epstein–Barr virus-related herpesvirus of cynomolgus monkey. Intervirology 43, 102–106.[CrossRef] [Google Scholar]
  44. Polvino-Bodnar, M., Kiso, J. & Schaffer, P. A.(1988). Mutational analysis of Epstein–Barr virus nuclear antigen 1 (EBNA 1). Nucleic Acids Res 16, 3415–3435.[CrossRef] [Google Scholar]
  45. Ritzi, M., Tillack, K., Gerhardt, J., Ott, E., Humme, S., Kremmer, E., Hammerschmidt, W. & Schepers, A.(2003). Complex protein–DNA dynamics at the latent origin of DNA replication of Epstein–Barr virus. J Cell Sci 116, 3971–3984.[CrossRef] [Google Scholar]
  46. Roscic, A., Moller, A., Calzado, M. A., Renner, F., Wimmer, V. C., Gresko, E., Ludi, K. S. & Schmitz, M. L.(2006). Phosphorylation-dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2. Mol Cell 24, 77–89.[CrossRef] [Google Scholar]
  47. Shah, W. A., Ambinder, R. F., Hayward, G. S. & Hayward, S. D.(1992). Binding of EBNA-1 to DNA creates a protease-resistant domain that encompasses the DNA recognition and dimerization functions. J Virol 66, 3355–3362. [Google Scholar]
  48. Shire, K., Kapoor, P., Jiang, K., Hing, M. N., Sivachandran, N., Nguyen, T. & Frappier, L.(2006). Regulation of the EBNA1 Epstein–Barr virus protein by serine phosphorylation and arginine methylation. J Virol 80, 5261–5272.[CrossRef] [Google Scholar]
  49. Su, W., Middleton, T., Sugden, B. & Echols, H.(1991). DNA looping between the origin of replication of Epstein–Barr virus and its enhancer site: stabilization of an origin complex with Epstein–Barr nuclear antigen 1. Proc Natl Acad Sci U S A 88, 10870–10874.[CrossRef] [Google Scholar]
  50. Sugden, B. & Warren, N.(1989). A promoter of Epstein–Barr virus that can function during latent infection can be transactivated by EBNA-1, a viral protein required for viral DNA replication during latent infection. J Virol 63, 2644–2649. [Google Scholar]
  51. Swaney, D. L., McAlister, G. C., Wirtala, M., Schwartz, J. C., Syka, J. E. & Coon, J. J.(2007). Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. Anal Chem 79, 477–485.[CrossRef] [Google Scholar]
  52. Syka, J. E., Coon, J. J., Schroeder, M. J., Shabanowitz, J. & Hunt, D. F.(2004). Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101, 9528–9533.[CrossRef] [Google Scholar]
  53. Tellam, J., Connolly, G., Green, K. J., Miles, J. J., Moss, D. J., Burrows, S. R. & Khanna, R.(2004). Endogenous presentation of CD8+ T cell epitopes from Epstein–Barr virus-encoded nuclear antigen 1. J Exp Med 199, 1421–1431.[CrossRef] [Google Scholar]
  54. Thompson, N. E., Hager, D. A. & Burgess, R. R.(1992). Isolation and characterization of a polyol-responsive monoclonal antibody useful for gentle purification of Escherichia coli RNA polymerase. Biochemistry 31, 7003–7008.[CrossRef] [Google Scholar]
  55. Wang, C. Y. & Sugden, B.(2008). Identifying a property of origins of DNA synthesis required to support plasmids stably in human cells. Proc Natl Acad Sci U S A 105, 9639–9644.[CrossRef] [Google Scholar]
  56. Wang, J., Lindner, S. E., Leight, E. R. & Sugden, B.(2006). Essential elements of a licensed, mammalian plasmid origin of DNA synthesis. Mol Cell Biol 26, 1124–1134.[CrossRef] [Google Scholar]
  57. Williams, D. K., Jr, McAlister, G. C., Good, D. M., Coon, J. J. & Muddiman, D. C.(2007). Dual electrospray ion source for electron-transfer dissociation on a hybrid linear ion trap-orbitrap mass spectrometer. Anal Chem 79, 7916–7919.[CrossRef] [Google Scholar]
  58. Wu, H., Kapoor, P. & Frappier, L.(2002). Separation of the DNA replication, segregation, and transcriptional activation functions of Epstein–Barr nuclear antigen 1. J Virol 76, 2480–2490.[CrossRef] [Google Scholar]
  59. Yates, J. L. & Camiolo, S. M.(1988). Dissection of DNA replication and enhancer activation functions of Epstein–Barr virus nuclear antigen 1. Cancer Cells 6, 197–205. [Google Scholar]
  60. Yates, J., Warren, N., Reisman, D. & Sugden, B.(1984). A cis-acting element from the Epstein–Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci U S A 81, 3806–3810.[CrossRef] [Google Scholar]
  61. Yates, J. L., Warren, N. & Sugden, B.(1985). Stable replication of plasmids derived from Epstein–Barr virus in various mammalian cells. Nature 313, 812–815.[CrossRef] [Google Scholar]
  62. Yates, J. L., Camiolo, S. M., Ali, S. & Ying, A.(1996). Comparison of the EBNA1 proteins of Epstein–Barr virus and herpesvirus papio in sequence and function. Virology 222, 1–13.[CrossRef] [Google Scholar]
  63. Yin, Y., Manoury, B. & Fahraeus, R.(2003). Self-inhibition of synthesis and antigen presentation by Epstein–Barr virus-encoded EBNA1. Science 301, 1371–1374.[CrossRef] [Google Scholar]
  64. Young, L. S. & Rickinson, A. B.(2004). Epstein–Barr virus: 40 years on. Nat Rev Cancer 4, 757–768.[CrossRef] [Google Scholar]
  65. Yu, X., Fu, S., Lai, M., Baer, R. & Chen, J.(2006). BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP. Genes Dev 20, 1721–1726.[CrossRef] [Google Scholar]

Data & Media loading...


Primers used for the generation of EBNA1P10A [ PDF] (116 KB)


[ Single PDF file] (477 KB)


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error