-
Volume 90,
Issue 9,
2009
Volume 90, Issue 9, 2009
- Review
-
-
Advances in dissecting mosquito innate immune responses to arbovirus infection
More LessArthropod-borne viruses – arboviruses – are a significant threat to public health. Whilst there is considerable knowledge about arbovirus interactions with vertebrate immunity, relatively little is known about how vectors such as mosquitoes control arbovirus infections. In this review, we discuss novel findings in the field of mosquito antiviral responses to arboviruses, in particular RNA interference, the up-and-coming field of general immune-signalling pathways, and cell death/apoptosis.
- Top
-
- Animal
-
- RNA viruses
-
Interaction of Sindbis virus non-structural protein 3 with poly(ADP-ribose) polymerase 1 in neuronal cells
More LessThe alphavirus non-structural protein 3 (nsP3) has a conserved N-terminal macro domain and a variable highly phosphorylated C-terminal domain. nsP3 forms complexes with cellular proteins, but its role in virus replication is poorly understood and protein interaction domains have not been defined. As the N-terminal macro domain can bind poly(ADP-ribose) (PAR), and PAR polymerase-1 (PARP-1) is activated and autoribosylated during Sindbis virus (SINV) infection, it was hypothesized that PARP-1 and nsP3 may interact. Co-immunoprecipitation studies showed that PARP-1 interacted with nsP3 during SINV infection of NSC34 neuronal cells and was most abundantly present in replication complexes that contained plus- and minus-strand SINV RNAs 10–14 h after infection, prior to PARP-1 activation or automodification with PAR. Treatment with an inhibitor of PARP enzymic activity did not affect the interaction between nsP3 and PARP-1 or SINV replication. Co-expression of individual domains of nsP3 with PARP-1 showed that nsP3 interacted with PARP-1 through the C-terminal domain, not the N-terminal macro domain, and that phosphorylation was not required. It was concluded that PARP-1 interacts with the C-terminal domain of nsP3, is present in replication complexes during virus amplification and may play a role in regulating virus RNA synthesis in neuronal cells.
-
NS4A regulates the ATPase activity of the NS3 helicase: a novel cofactor role of the non-structural protein NS4A from West Nile virus
Using constructs that encode the individual West Nile virus (WNV) NS3helicase (NS3hel) and NS3hel linked to the hydrophilic, N-terminal 1–50 sequence of NS4A, we demonstrated that the presence of NS4A allows NS3hel to conserve energy in the course of oligonucleotide substrate unwinding. Using NS4A mutants, we also determined that the C-terminal acidic EELPD/E motif of NS4A, which appears to be functionally similar to the acidic EFDEMEE motif of hepatitis C virus (HCV) NS4A, is essential for regulating the ATPase activity of NS3hel. We concluded that, similar to HCV NS4A, NS4A of WNV acts as a cofactor for NS3hel and allows helicase to sustain the unwinding rate of the viral RNA under conditions of ATP deficiency.
-
Phylogeography and molecular epidemiology of hepatitis C virus genotype 2 in Africa
Understanding the origin and nature of hepatitis C virus (HCV) genetic diversity is critical for improving treatment and vaccine design, and such diversity is the sole source of information about the virus' epidemic history prior to its identification 20 years ago. In this paper, we study the molecular epidemiology of HCV genotype 2 in its region of endemic origin, west and central Africa. Our analysis includes 56 new and highly diverse HCV isolates sampled from infected individuals in Guinea-Bissau. By combining phylogenetic, geographical and epidemiological information, we find a previously unappreciated geographical structure in the diversity of HCV genotype 2, pointing to a history of eastwards spatial spread from the west African coast to Cameroon that took place over several centuries. Molecular clock analysis dates the common ancestor of HCV in Guinea-Bissau to 1470 (1414–1582). The phylogenetic position of isolates from Madagascar and Martinique suggests a role for the historical slave trade in the global dissemination of HCV and of the epidemic subtypes 2a and 2c. Coalescent-based estimates of epidemic growth indicate a rapid 20th-century spread of HCV genotype 2 in Cameroon that is absent in Guinea-Bissau. We discuss this contrast in the context of possible parenteral HCV exposure during public-health campaigns undertaken during the colonial era.
-
N-Linked glycans on dengue viruses grown in mammalian and insect cells
More LessThis study compared the ability of mosquito and mammalian cell-derived dengue virus (DENV) to infect human dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN)-expressing cells and characterized the structure of envelope (E) protein N-linked glycans on DENV derived from the two cell types. DENVs derived from both cell types were equally effective at infecting DC-SIGN-expressing human monocytes and dendritic cells. The N-linked glycans on mosquito cell-derived virus were a mix of high-mannose and paucimannose glycans. In virus derived from mammalian cells, the N-linked glycans were a mix of high-mannose and complex glycans. These results indicate that N-linked glycans are incompletely processed during DENV egress from cells, resulting in high-mannose glycans on viruses derived from both cell types. Studies with full-length and truncated E protein demonstrated that incomplete processing was most likely a result of the poor accessibility of glycans on the membrane-anchored protein.
-
Severe acute respiratory syndrome coronavirus nucleocapsid protein does not modulate transcription of the human FGL2 gene
More LessAmong the structural and nonstructural proteins of severe acute respiratory syndrome coronavirus (SARS-CoV), the nucleocapsid (N) protein plays pivotal roles in the biology and pathogenesis of viral infection. N protein is thought to dysregulate cell signalling and the transcription of cellular genes, including FGL2, which encodes a prothrombinase implicated in vascular thrombosis, fibrin deposition and pneumocyte necrosis. Here, we showed that N protein expressed in cultured human cells was predominantly found in the cytoplasm and was competent in repressing the transcriptional activity driven by interferon-stimulated response elements. However, the expression of N protein did not influence the transcription from the FGL2 promoter. More importantly, N protein did not modulate the expression of FGL2 mRNA or protein in transfected or SARS-CoV-infected cells. Taken together, our findings did not support the model in which SARS-CoV N protein specifically modulates transcription of the FGL2 gene to cause fibrosis and vascular thrombosis.
-
Functional differences between precursor and mature forms of the RNA-dependent RNA polymerase from rabbit hemorrhagic disease virus
More LessThe genome region encoding the RNA-dependent RNA polymerase 3CD-like precursor from rabbit hemorrhagic disease virus (RHDV) (isolate AST/89) was cloned and expressed in Escherichia coli using polyhistidine fusion-based vectors. The full-length recombinant 3CD-like precursor polypeptide could not be purified as a consequence of its autoproteolytic processing. A Cys→Gly substitution of the 3C-like catalytic cysteine (C1212) impeded the cleavage and allowed the purification of the precursor at high yields using a polyhistidine fusion expression vector. Equimolar amounts of purified recombinant precursor (C1212G mutant) and mature 3D-like polymerase showed significant activity differences in genome-linked protein (VPg) uridylylation and RNA polymerization using in vitro assays. The data indicated that the precursor was more active than the mature polymerase in catalysing RHDV VPg uridylylation, whereas the latter enzyme form had higher activity than its precursor in RNA polymerization in vitro assays using a heteropolymeric RNA template.
-
Pathogenesis and transmission of the novel swine-origin influenza virus A/H1N1 after experimental infection of pigs
Influenza virus A/H1N1, which is currently causing a pandemic, contains gene segments with ancestors in the North American and Eurasian swine lineages. To get insights into virus replication dynamics, clinical symptoms and virus transmission in pigs, we infected animals intranasally with influenza virus A/Regensburg/D6/09/H1N1. Virus excretion in the inoculated pigs was detected in nasal swabs from 1 day post-infection (p.i.) onwards and the pigs developed generally mild symptoms, including fever, sneezing, nasal discharge and diarrhoea. Contact pigs became infected, shed virus and developed clinical symptoms similar to those in the inoculated animals. Plasma samples of all animals remained negative for virus RNA. Nucleoprotein- and haemagglutinin H1-specific antibodies could be detected by ELISA 7 days p.i. CD4+ T cells became activated immediately after infection and both CD4+ and CD8+ T-cell populations expanded from 3 to 7 days p.i., coinciding with clinical signs. Contact chickens remained uninfected, as judged by the absence of virus excretion, clinical signs and seroconversion.
-
Large-scale analysis of influenza A virus sequences reveals potential drug target sites of non-structural proteins
More LessThe non-structural protein 1 (NS1) of the influenza A virus and the NS2 protein, which is also known as nuclear export protein, play important roles in the infectious life cycle of the virus. The objective of this study was to find the degree of conservation in the NS proteins and to identify conserved sites of functional or structural importance that may be utilized as potential drug target sites. The analysis was based on 2620 amino acid sequences for the NS1 protein and 1195 sequences for the NS2 protein. The degree of conservation and potential binding sites were mapped onto the protein structures obtained from a combination of experimentally available structure fragments with predicted threading models. In addition to high conservation in protein regions of known function, novel highly conserved sites have been identified, namely Glu159, Thr171, Val192, Arg200, Glu208 and Gln218 on the NS1 protein and Ser24, Leu28, Arg66, Arg84, Ser93, Ile97 and Leu103 on the NS2 protein. Using the Q-SiteFinder binding site prediction algorithm, several highly conserved binding sites were found, including two spatially close sites on the NS1 protein, which could be targeted with a bivalent ligand that would interfere with double-stranded RNA binding. Altogether, this work reveals novel universally conserved residues that are candidates for protein–protein interactions and provide the basis for designing universal anti-influenza drugs.
-
Differential gene-expression and host-response profiles against avian influenza virus within the chicken lung due to anatomy and airflow
More LessSampling the complete organ instead of defined parts might affect analysis at both the cellular and transcriptional levels. We defined host responses to H9N2 avian influenza virus (AIV) in trachea and different parts of the lung. Chickens were spray-inoculated with either saline or H9N2 AIV. Trachea and lung were sampled at 1 and 3 days post-inoculation (p.i.) for immunocytochemistry, real-time quantitative RT-PCR and gene-expression profiling. The trachea was divided into upper and lower parts and the lung into four segments, according to anatomy and airflow. Two segments contained the primary and secondary bronchi, cranial versus caudal (parts L1 and L3), and two segments contained the tertiary bronchi, cranial versus caudal (parts L2 and L4). Between the upper and lower trachea in both control and infected birds, minor differences in gene expression and host responses were found. In the lung of control birds, differences in anatomy were reflected in gene expression, and in the lung of infected birds, virus deposition enhanced the differences in gene expression. Differential gene expression in trachea and lung suggested common responses to a wide range of agents and site-specific responses. In trachea, site-specific responses were related to heat shock and lysozyme activity. In lung L1, which contained most virus, site-specific responses were related to genes involved in innate responses, interleukin activity and endocytosis. Our study indicates that the anatomy of the chicken lung must be taken into account when investigating in vivo responses to respiratory virus infections.
-
Parainfluenza virus 5 genomes are located in viral cytoplasmic bodies whilst the virus dismantles the interferon-induced antiviral state of cells
More LessAlthough the replication cycle of parainfluenza virus type 5 (PIV5) is initially severely impaired in cells in an interferon (IFN)-induced antiviral state, the virus still targets STAT1 for degradation. As a consequence, the cells can no longer respond to IFN and after 24−48 h, they go out of the antiviral state and normal virus replication is established. Following infection of cells in an IFN-induced antiviral state, viral nucleocapsid proteins are initially localized within small cytoplasmic bodies, and appearance of these cytoplasmic bodies correlates with the loss of STAT1 from infected cells. In situ hybridization, using probes specific for the NP and L genes, demonstrated the presence of virus genomes within these cytoplasmic bodies. These viral cytoplasmic bodies do not co-localize with cellular markers for stress granules, cytoplasmic P-bodies or autophagosomes. Furthermore, they are not large insoluble aggregates of viral proteins and/or nucleocapsids, as they can simply and easily be dispersed by ‘cold-shocking’ live cells, a process that disrupts the cytoskeleton. Given that during in vivo infections, PIV5 will inevitably infect cells in an IFN-induced antiviral state, we suggest that these cytoplasmic bodies are areas in which PIV5 genomes reside whilst the virus dismantles the antiviral state of the cells. Consequently, viral cytoplasmic bodies may play an important part in the strategy that PIV5 uses to circumvent the IFN system.
-
Lymphotropism and host responses during acute wild-type canine distemper virus infections in a highly susceptible natural host
The mechanisms behind the in vivo virulence of immunosuppressive wild-type morbillivirus infections are still not fully understood. To investigate lymphotropism and host responses, we have selected the natural host model of canine distemper virus (CDV) infection in mink. This model displays multisystemic infection, similar to measles virus and rinderpest virus infections in their susceptible natural hosts. The wild-type CDVs investigated provoked marked virulence differences, inducing mild versus marked to severe acute disease. The mildly virulent wild-type virus induced transient lymphopenia, despite the development of massive infection of peripheral blood mononuclear cells (PBMCs) exceeding that determined for the highly virulent wild-type virus, indicating an inverse relationship between acute virulence and the extent of viraemia in the investigated wild-type viruses. Single-cell cytokine production in PBMCs was investigated throughout the acute infections. We observed Th1- and Th2-type cytokine responses beginning in the prodromal phase, and late inflammatory responses were shared between the wild-type infections.
-
Phylogenetic characterization of hantaviruses from wild rodents and hantavirus pulmonary syndrome cases in the state of Paraná (southern Brazil)
Over 1100 cases of hantavirus pulmonary syndrome (HPS) have occurred in Brazil since 1993, but little is known about Brazilian hantaviruses, and many of their rodent hosts remain unknown. The Araucaria hantavirus (ARAUV) was described recently from HPS patients from Paraná, in southern Brazil, but its host could not be identified. In this study, rodents were captured from regions with high HPS prevalence to address this issue. ARAUV RNA was detected in three distantly related rodent species: Oligoryzomys nigripes, Oxymycterus judex and Akodon montensis. Furthermore, a specimen of A. montensis was infected with a Jaborá-like virus, implying that A. montensis can be infected by at least two different hantaviruses. The presence of the same hantavirus strain in three different rodent species and the co-circulation of two different strains in the same rodent species highlight the potential for genomic reassortment, which could have an impact on hantavirus transmission dynamics in nature and on human epidemiology.
-
Differential virulence mechanisms of infectious hematopoietic necrosis virus in rainbow trout (Oncorhynchus mykiss) include host entry and virus replication kinetics
More LessHost specificity is a phenomenon exhibited by all viruses. For the fish rhabdovirus infectious hematopoietic necrosis virus (IHNV), differential specificity of virus strains from the U and M genogroups has been established both in the field and in experimental challenges. In rainbow trout (Oncorhynchus mykiss), M IHNV strains are consistently more prevalent and more virulent than U IHNV. The basis of the differential ability of these two IHNV genogroups to cause disease in rainbow trout was investigated in live infection challenges with representative U and M IHNV strains. When IHNV was delivered by intraperitoneal injection, the mortality caused by U IHNV increased, indicating that the low virulence of U IHNV is partly due to inefficiency in entering the trout host. Analyses of in vivo replication showed that U IHNV consistently had lower prevalence and lower viral load than M IHNV during the course of infection. In analyses of the host immune response, M IHNV-infected fish consistently had higher and longer expression of innate immune-related genes such as Mx-1. This suggests that the higher virulence of M IHNV is not due to suppression of the immune response in rainbow trout. Taken together, the results support a kinetics hypothesis wherein faster replication enables M IHNV to rapidly achieve a threshold level of virus necessary to override the strong host innate immune response.
-
Full-length sequencing and genetic characterization of Breu Branco virus (Reoviridae, Orbivirus) and two related strains isolated from Anopheles mosquitoes
Breu Branco virus (BE AR 492347) was isolated from Anopheles (Nyssorhynchus) triannulatus mosquitoes captured in Tucuruí, Pará State, northern Brazil, in 1988. No cross-reactivity by complement-fixation tests was observed between Breu Branco virus and other known arboviruses. Results of electron microscopy and physicochemical tests suggested that Breu Branco virus may be a member of the family Reoviridae. In order to elucidate its taxonomic status, a comprehensive genetic characterization was conducted for Breu Branco virus and related strains (BE AR 494475 and BE AR 486204) that were also isolated from Anopheles mosquitoes in the same area. This included full-length genome sequencing, determination of genetic traits and phylogenetic analysis. Breu Branco virus showed a similar genome organization to members of the genus Orbivirus, family Reoviridae. Genetically, Breu Branco virus was indistinguishable from strains BE AR 494475 and BE AR 486204. Phylogenetic analysis suggested that Breu Branco virus BE AR 492347 and its related strains constitute a novel species of the genus Orbivirus. Breu Branco virus is the first Brazilian orbivirus and the fifth orbivirus in the world to be sequenced fully.
-
Drosophila A virus is an unusual RNA virus with a T=3 icosahedral core and permuted RNA-dependent RNA polymerase
The vinegar fly, Drosophila melanogaster, is a popular model for the study of invertebrate antiviral immune responses. Several picorna-like viruses are commonly found in both wild and laboratory populations of D. melanogaster. The best-studied and most pathogenic of these is the dicistrovirus Drosophila C virus. Among the uncharacterized small RNA viruses of D. melanogaster, Drosophila A virus (DAV) is the least pathogenic. Historically, DAV has been labelled as a picorna-like virus based on its particle size and the content of its RNA genome. Here, we describe the characterization of both the genome and the virion structure of DAV. Unexpectedly, the DAV genome was shown to encode a circular permutation in the palm-domain motifs of the RNA-dependent RNA polymerase. This arrangement has only been described previously for a subset of viruses from the double-stranded RNA virus family Birnaviridae and the T=4 single-stranded RNA virus family Tetraviridae. The 8 Å (0.8 nm) DAV virion structure computed from cryo-electron microscopy and image reconstruction indicates that the virus structural protein forms two discrete domains within the capsid. The inner domain is formed from a clear T=3 lattice with similarity to the β-sandwich domain of tomato bushy stunt virus, whilst the outer domain is not ordered icosahedrally, but forms a cage-like structure that surrounds the core domain. Taken together, this indicates that DAV is highly divergent from previously described viruses.
- DNA viruses
-
Interaction of Marek's disease virus oncoprotein Meq with heat-shock protein 70 in lymphoid tumour cells
Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that induces the rapid onset of T-cell lymphomas in poultry. The MDV-encoded oncoprotein Meq plays an important role in oncogenicity, as its deletion abolishes the ability of the virus to induce tumours. It has been shown previously that Meq oncogenicity is linked to its interaction with C-terminal binding protein 1 (CtBP), a property also shared by other virus-encoded oncoproteins such as adenovirus E1A and Epstein–Barr virus EBNA3A and -3C. Therefore, this study examined whether Meq also shares the properties of these viral oncoproteins in interacting with other binding partners such as heat-shock protein 70 (Hsp70), a molecular chaperone protein linked to multiple cellular functions including neoplastic transformation. Confocal microscopic analysis demonstrated that MDV infection induced nuclear accumulation of Hsp70 and its co-localization with Meq. Biochemical evidence of Meq–Hsp70 interaction was obtained by two-way immunoprecipitation with Meq- and Hsp70-specific antibodies. To demonstrate further the Meq–Hsp70 interaction in virus-induced lymphomas, recombinant MDV was generated expressing an N-terminal tandem affinity purification (TAP) tag-fused Meq by mutagenesis of the infectious BAC clone of the oncogenic MDV strain RB-1B. Demonstration of Hsp70 in the TAP-tag affinity purified Meq from tumours induced by the recombinant virus, using quadrupole time-of-flight tandem mass spectrometry analysis, further confirmed the Meq–Hsp70 interaction in the transformed lymphocytes. Given the well-documented evidence of the tumorigenic properties of Hsp70 and its interaction with a number of other known viral oncoproteins, demonstration of the interaction of Meq and Hsp70 is significant in MDV oncogenesis.
-
Infection with herpes simplex type 1-based amplicon vectors results in an IRF3/7-dependent, TLR-independent activation of the innate antiviral response in primary human fibroblasts
Amplicons are helper-dependent herpes simplex virus type 1 (HSV-1)-based vectors that can deliver very large, foreign DNA sequences and, as such, are good candidates for both gene delivery and vaccine development. However, many studies have shown that innate immune responses induced by virus vectors can play a significant role in the control of transgenic expression and in the induction of inflammatory responses. Furthermore, amplicons are very interesting tools to study innate cellular responses elicited by entry of HSV-1 particles in the absence of any virus gene expression. For these reasons, in this study we characterized the innate antiviral response established in human fibroblasts of limited passage (HFFF-2) infected by amplicons. Our results indicate that infection with amplicons triggered an interferon (IFN)-regulatory factors 3 and 7 (IRF3/7)-dependent antiviral response, rendered the cells resistant to vesicular stomatitis virus infection and induced significant changes in the pattern of cellular gene expression, including the upregulation of Toll-like receptor 3 (TLR3), IRF7 and IFN-stimulated genes (ISGs). In contrast, we observed only a mild and contained type I IFN response in infected cells. Amplicon infection induced nuclear translocation and subsequent degradation of IRF3, without hyperphosphorylation of the protein. Inhibition of endosome-resident TLR signalling by blocking lysosome maturation or the knockdown of TLR3 and 4 did not abolish the cellular response to amplicons, whereas knockdown of IRF3 and 7 inhibited ISG and IFN-β expression severely. Therefore, our results confirm the existence of TLR-independent, IRF3/7-dependent activation pathways triggered by HSV-1 particles in human fibroblasts.
-
Unravelling the interaction of human cytomegalovirus with dendritic cells by using SuperSAGE
Human cytomegalovirus (HCMV) is a ubiquitous pathogen with a predilection for dendritic cells (DCs). Latently infected myeloid progenitor cells develop into actively infected DCs with impaired functionality, allowing dissemination and transfer of virus throughout the body. However, the viral genes expressed in DCs and their effect on the cellular transcriptome are currently unknown. We investigated human DCs infected with HCMV by using SuperSAGE, allowing us to analyse the transcriptomes of both host and pathogen simultaneously. A small number of viral transcripts were expressed strongly and rapidly post-infection. However, only two were of the immediate-early class, including one with an unknown function. The viral genes expressed reflected the cellular milieu, with the majority having a known or suspected immune-evasion function. Several viral genes identified lack a known function and may fulfil specialized roles within DCs. The cellular response to infection included a strong interferon response, induction of cytokine and anti-apoptotic genes and alterations in genes involved in antigen presentation. We demonstrated the validity of our approach by showing that novel changes first seen in the transcriptome were reflected in the phenotype of HCMV-infected DCs. Delineation of the transcriptional changes underlying the phenotype of HCMV-infected DCs allows a better understanding of how a herpesvirus infects DCs and pinpoints linkages between phenotype and specific viral genes.
-
Dependence of the localization and function of the human cytomegalovirus protein US6 on the transporter associated with antigen processing
More LessHuman cytomegalovirus protein US6 inhibits the transporter associated with antigen processing (TAP), which transports peptides into the endoplasmic reticulum (ER) for binding to major histocompatibility complex (MHC) class I molecules. We demonstrate that, in TAP-deficient cells, US6 is retained in the ER and binds to calnexin, but does not inhibit cell-surface expression of HLA-A201, an MHC class I allele that binds to peptides whose import into the ER is TAP-independent. Furthermore, in TAP-positive cells, US6 reduces the cell-surface expression of HLA-B2705, an MHC class I allele that is dependent on TAP for peptide binding, to a greater extent than that of HLA-A201. These data demonstrate that US6 has differential effects on the cell-surface expression of MHC class I alleles and are consistent with TAP being the sole inhibitory target of US6 in the MHC class I antigen-presentation pathway.
Volumes and issues
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month
