This study compared the ability of mosquito and mammalian cell-derived dengue virus (DENV) to infect human dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN)-expressing cells and characterized the structure of envelope (E) protein -linked glycans on DENV derived from the two cell types. DENVs derived from both cell types were equally effective at infecting DC-SIGN-expressing human monocytes and dendritic cells. The -linked glycans on mosquito cell-derived virus were a mix of high-mannose and paucimannose glycans. In virus derived from mammalian cells, the -linked glycans were a mix of high-mannose and complex glycans. These results indicate that -linked glycans are incompletely processed during DENV egress from cells, resulting in high-mannose glycans on viruses derived from both cell types. Studies with full-length and truncated E protein demonstrated that incomplete processing was most likely a result of the poor accessibility of glycans on the membrane-anchored protein.


Article metrics loading...

Loading full text...

Full text loading...



  1. Bryant, J. E., Calvert, A. E., Mesesan, K., Crabtree, M. B., Volpe, K. E., Silengo, S., Kinney, R. M., Huang, C. Y., Miller, B. R. & Roehrig, J. T.(2007). Glycosylation of the dengue 2 virus E protein at N67 is critical for virus growth in vitro but not for growth in intrathoracically inoculated Aedes aegypti mosquitoes. Virology 366, 415–423.[CrossRef] [Google Scholar]
  2. Cambi, A. & Figdor, C. G.(2003). Dual function of C-type lectin-like receptors in the immune system. Curr Opin Cell Biol 15, 539–546.[CrossRef] [Google Scholar]
  3. Cambi, A., Gijzen, K., de Vries, J. M., Torensma, R., Joosten, B., Adema, G. J., Netea, M. G., Kullberg, B. J., Romani, L. & Figdor, C. G.(2003). The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur J Immunol 33, 532–538.[CrossRef] [Google Scholar]
  4. Chambers, T. J., McCourt, D. W. & Rice, C. M.(1990a). Production of yellow fever virus proteins in infected cells: identification of discrete polyprotein species and analysis of cleavage kinetics using region-specific polyclonal antisera. Virology 177, 159–174.[CrossRef] [Google Scholar]
  5. Chambers, T. J., Hahn, C. S., Galler, R. & Rice, C. M.(1990b). Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44, 649–688.[CrossRef] [Google Scholar]
  6. Chen, Y. C. & Wang, S. Y.(2002). Activation of terminally differentiated human monocytes/macrophages by dengue virus: productive infection, hierarchical production of innate cytokines and chemokines, and the synergistic effect of lipopolysaccharide. J Virol 76, 9877–9887.[CrossRef] [Google Scholar]
  7. Crowley, J. F., Goldstein, I. J., Arnarp, J. & Lonngren, J.(1984). Carbohydrate binding studies on the lectin from Datura stramonium seeds. Arch Biochem Biophys 231, 524–533.[CrossRef] [Google Scholar]
  8. Davis, N. L., Caley, I. J., Brown, K. W., Betts, M. R., Irlbeck, D. M., McGrath, K. M., Connell, M. J., Montefiori, D. C., Frelinger, J. A. & other authors(2000). Vaccination of macaques against pathogenic simian immunodeficiency virus with Venezuelan equine encephalitis virus replicon particles. J Virol 74, 371–378.[CrossRef] [Google Scholar]
  9. Davis, C. W., Mattei, L. M., Nguyen, H. Y., Ansarah-Sobrinho, C., Doms, R. W. & Pierson, T. C.(2006a). The location of asparagine-linked glycans on West Nile virions controls their interactions with CD209 (dendritic cell-specific ICAM-3 grabbing nonintegrin). J Biol Chem 281, 37183–37194.[CrossRef] [Google Scholar]
  10. Davis, C. W., Nguyen, H. Y., Hanna, S. L., Sanchez, M. D., Doms, R. W. & Pierson, T. C.(2006b). West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J Virol 80, 1290–1301.[CrossRef] [Google Scholar]
  11. Despres, P., Frenkiel, M. P. & Deubel, V.(1993). Differences between cell membrane fusion activities of two dengue type-1 isolates reflect modifications of viral structure. Virology 196, 209–219.[CrossRef] [Google Scholar]
  12. Engering, A., Geijtenbeek, T. B., van Vliet, S. J., Wijers, M., van Liempt, E., Demaurex, N., Lanzavecchia, A., Fransen, J., Figdor, C. G. & other authors(2002). The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J Immunol 168, 2118–2126.[CrossRef] [Google Scholar]
  13. Feinberg, H., Mitchell, D. A., Drickamer, K. & Weis, W. I.(2001). Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science 294, 2163–2166.[CrossRef] [Google Scholar]
  14. Ferlenghi, I., Clarke, M., Ruttan, T., Allison, S. L., Schalich, J., Heinz, F. X., Harrison, S. C., Rey, F. A. & Fuller, S. D.(2001). Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus. Mol Cell 7, 593–602.[CrossRef] [Google Scholar]
  15. Gramberg, T., Hofmann, H., Moller, P., Lalor, P. F., Marzi, A., Geier, M., Krumbiegel, M., Winkler, T., Kirchhoff, F. & other authors(2005). LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus. Virology 340, 224–236.[CrossRef] [Google Scholar]
  16. Gubler, D. J.(2002). Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10, 100–103.[CrossRef] [Google Scholar]
  17. Gubler, D. J. & Clark, G. G.(1995). Dengue/dengue hemorrhagic fever: the emergence of a global health problem. Emerg Infect Dis 1, 55–57.[CrossRef] [Google Scholar]
  18. Hanna, S. L., Pierson, T. C., Sanchez, M. D., Ahmed, A. A., Murtadha, M. M. & Doms, R. W.(2005).N-linked glycosylation of West Nile virus envelope proteins influences particle assembly and infectivity. J Virol 79, 13262–13274.[CrossRef] [Google Scholar]
  19. Heinz, F. X. & Allison, S. L.(2003). Flavivirus structure and membrane fusion. Adv Virus Res 59, 63–97. [Google Scholar]
  20. Ho, L. J., Wang, J. J., Shaio, M. F., Kao, C. L., Chang, D. M., Han, S. W. & Lai, J. H.(2001). Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. J Immunol 166, 1499–1506.[CrossRef] [Google Scholar]
  21. Houng, H. S., Chen, R. C.-M., Vaughn, D. W. & Kanesa-thasan, N.(2001). Development of a fluorogenic RT-PCR system for quantitative identification of dengue virus serotypes 1–4 using conserved and serotype-specific 3′ noncoding sequences. J Virol Methods 95, 19–32.[CrossRef] [Google Scholar]
  22. Hsieh, P. & Robbins, P. W.(1984). Regulation of asparagine-linked oligosaccharide processing. oligosaccharide processing in Aedes albopictus mosquito cells. J Biol Chem 259, 2375–2382. [Google Scholar]
  23. Hubbard, S. C.(1988). Regulation of glycosylation. the influence of protein structure on N-linked oligosaccharide processing. J Biol Chem 263, 19303–19317. [Google Scholar]
  24. Hubbard, S. C. & Ivatt, R. J.(1981). Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem 50, 555–583.[CrossRef] [Google Scholar]
  25. Jarvis, D. L.(2003). Developing baculovirus–insect cell expression systems for humanized recombinant glycoprotein production. Virology 310, 1–7.[CrossRef] [Google Scholar]
  26. Johnson, A. J., Guirakhoo, F. & Roehrig, J. T.(1994). The envelope glycoproteins of dengue 1 and dengue 2 viruses grown in mosquito cells differ in their utilization of potential glycosylation sites. Virology 203, 241–249.[CrossRef] [Google Scholar]
  27. Klimstra, W. B., Nangle, E. M., Smith, M. S., Yurochko, A. D. & Ryman, K. D.(2003). DC-SIGN and L-SIGN can act as attachment receptors for alphaviruses and distinguish between mosquito cell- and mammalian cell-derived viruses. J Virol 77, 12022–12032.[CrossRef] [Google Scholar]
  28. Kraus, A. A., Messer, W., Haymore, L. B. & de Silva, A. M.(2007). Comparison of plaque- and flow cytometry-based methods for measuring dengue virus neutralization. J Clin Microbiol 45, 3777–3780.[CrossRef] [Google Scholar]
  29. Kuhn, R. J., Zhang, W., Rossmann, M. G., Pletnev, S. V., Corver, J., Lenches, E., Jones, C. T., Mukhopadhyay, S., Chipman, P. R. & other authors(2002). Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717–725.[CrossRef] [Google Scholar]
  30. Lambeth, C. R., White, L. J., Johnston, R. E. & de Silva, A. M.(2005). Flow cytometry-based assay for titrating dengue virus. J Clin Microbiol 43, 3267–3272.[CrossRef] [Google Scholar]
  31. Leonard, C. K., Spellman, M. W., Riddle, L., Harris, R. J., Thomas, J. N. & Gregory, T. J.(1990). Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J Biol Chem 265, 10373–10382. [Google Scholar]
  32. Lorenz, I. C., Allison, S. L., Heinz, F. X. & Helenius, A.(2002). Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J Virol 76, 5480–5491.[CrossRef] [Google Scholar]
  33. Lozach, P. Y., Burleigh, L., Staropoli, I., Navarro-Sanchez, E., Harriague, J., Virelizier, J. L., Rey, F. A., Despres, P., Arenzana-Seisdedos, F. & Amara, A.(2005). Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals. J Biol Chem 280, 23698–23708.[CrossRef] [Google Scholar]
  34. Maley, F., Trimble, R. B., Tarentino, A. L. & Plummer, T. H., Jr(1989). Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem 180, 195–204.[CrossRef] [Google Scholar]
  35. Marchal, I., Jarvis, D. L., Cacan, R. & Verbert, A.(2001). Glycoproteins from insect cells: sialylated or not? Biol Chem 382, 151–159. [Google Scholar]
  36. Marovich, M., Grouard-Vogel, G., Louder, M., Eller, M., Sun, W., Wu, S. J., Putvatana, R., Murphy, G., Tassaneetrithep, B. & other authors(2001). Human dendritic cells as targets of dengue virus infection. J Investig Dermatol Symp Proc 6, 219–224.[CrossRef] [Google Scholar]
  37. Miller, J. L., deWet, B. J., Martinez-Pomares, L., Radcliffe, C. M., Dwek, R. A., Rudd, P. M. & Gordon, S.(2008). The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog 4, e17[CrossRef] [Google Scholar]
  38. Mitchell, D. A., Fadden, A. J. & Drickamer, K.(2001). A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands. J Biol Chem 276, 28939–28945.[CrossRef] [Google Scholar]
  39. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C.(2003). A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A 100, 6986–6991.[CrossRef] [Google Scholar]
  40. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C.(2005). Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol 79, 1223–1231.[CrossRef] [Google Scholar]
  41. Mondotte, J. A., Lozach, P. Y., Amara, A. & Gamarnik, A. V.(2007). Essential role of dengue virus envelope protein N glycosylation at asparagine-67 during viral propagation. J Virol 81, 7136–7148.[CrossRef] [Google Scholar]
  42. Moran, T. P., Collier, M., McKinnon, K. P., Davis, N. L., Johnston, R. E. & Serody, J. S.(2005). A novel viral system for generating antigen-specific T cells. J Immunol 175, 3431–3438.[CrossRef] [Google Scholar]
  43. Navarro-Sanchez, E., Altmeyer, R., Amara, A., Schwartz, O., Fieschi, F., Virelizier, J. L., Arenzana-Seisdedos, F. & Despres, P.(2003). Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep 4, 723–728.[CrossRef] [Google Scholar]
  44. Palmer, D. R., Sun, P., Celluzzi, C., Bisbing, J., Pang, S., Sun, W., Marovich, M. A. & Burgess, T.(2005). Differential effects of dengue virus on infected and bystander dendritic cells. J Virol 79, 2432–2439.[CrossRef] [Google Scholar]
  45. Pfeffer, S. R. & Rothman, J. E.(1987). Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu Rev Biochem 56, 829–852.[CrossRef] [Google Scholar]
  46. Pokidysheva, E., Zhang, Y., Battisti, A. J., Bator-Kelly, C. M., Chipman, P. R., Xiao, C., Gregorio, G. G., Hendrickson, W. A., Kuhn, R. J. & Rossmann, M. G.(2006). Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 124, 485–493.[CrossRef] [Google Scholar]
  47. Shabman, R. S., Morrison, T. E., Moore, C., White, L., Suthar, M. S., Hueston, L., Rulli, N., Lidbury, B., Ting, J. P. & other authors(2007). Differential induction of type I interferon responses in myeloid dendritic cells by mosquito and mammalian-cell-derived alphaviruses. J Virol 81, 237–247.[CrossRef] [Google Scholar]
  48. Shabman, R. S., Rogers, K. M. & Heise, M. T.(2008). Ross River virus envelope glycans contribute to type I interferon production in myeloid dendritic cells. J Virol 82, 12374–12383.[CrossRef] [Google Scholar]
  49. Shibuya, N., Goldstein, I. J., Van Damme, E. J. & Peumans, W. J.(1988). Binding properties of a mannose-specific lectin from the snowdrop (Galanthus nivalis) bulb. J Biol Chem 263, 728–734. [Google Scholar]
  50. Silva, M. C., Guerrero-Plata, A., Gilfoy, F. D., Garofalo, R. P. & Mason, P. W.(2007). Differential activation of human monocyte-derived and plasmacytoid dendritic cells by West Nile virus generated in different host cells. J Virol 81, 13640–13648.[CrossRef] [Google Scholar]
  51. Smith, G. W. & Wright, P. J.(1985). Synthesis of proteins and glycoproteins in dengue type 2 virus-infected Vero and Aedes albopictus cells. J Gen Virol 66, 559–571.[CrossRef] [Google Scholar]
  52. Sun, P., Fernandez, S., Marovich, M. A., Palmer, D. R., Celluzzi, C. M., Boonnak, K., Liang, Z., Subramanian, H., Porter, K. R. & other authors(2009). Functional characterization of ex vivo blood myeloid and plasmacytoid dendritic cells after infection with dengue virus. Virology 383, 207–215.[CrossRef] [Google Scholar]
  53. Tassaneetrithep, B., Burgess, T. H., Granelli-Piperno, A., Trumpfheller, C., Finke, J., Sun, W., Eller, M. A., Pattanapanyasat, K., Sarasombath, S. & other authors(2003). DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197, 823–829.[CrossRef] [Google Scholar]
  54. Vigerust, D. J. & Shepherd, V. L.(2007). Virus glycosylation: role in virulence and immune interactions. Trends Microbiol 15, 211–218.[CrossRef] [Google Scholar]
  55. White, L. J., Parsons, M. M., Whitmore, A. C., Williams, B. M., de Silva, A. & Johnston, R. E.(2007). An immunogenic and protective alphavirus replicon particle-based dengue vaccine overcomes maternal antibody interference in weanling mice. J Virol 81, 10329–10339.[CrossRef] [Google Scholar]
  56. Whitehead, S. S., Blaney, J. E., Durbin, A. P. & Murphy, B. R.(2007). Prospects for a dengue virus vaccine. Nat Rev Microbiol 5, 518–528.[CrossRef] [Google Scholar]
  57. WHO(2009). Dengue and dengue hemorrhagic fever. Fact sheet no. 117. http://www.who.int/mediacentre/factsheets/fs117/en/
  58. Wu, S. J., Grouard-Vogel, G., Sun, W., Mascola, J. R., Brachtel, E., Putvatana, R., Louder, M. K., Filgueira, L., Marovich, M. A. & other authors(2000). Human skin Langerhans cells are targets of dengue virus infection. Nat Med 6, 816–820.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error