1887

Abstract

The transformation of B cells by Epstein–Barr virus (EBV), into lymphoblastoid cell lines (LCLs) results in the upregulation of STAT1, a key transcription factor in the interferon signalling pathway. Although the mechanism of EBV induction of STAT1 protein expression has been intensively studied, there has been little investigation into the function of STAT1 in EBV-transformed LCLs. In this study, we have implemented a novel strategy to investigate the functional role of STAT1 through the introduction of the simian virus 5 (SV5) V-protein into LCLs by retroviral gene transfer. The V-protein is a virally evolved STAT1 inhibitor that specifically targets STAT1 for proteasomal degradation. Using this model, we have shown that major histocompatibility complex (MHC) class I and class II molecules are downregulated at the cell surface following a reduction in STAT1 protein expression. With regards to MHC class I, the impairment of the antigen processing machinery renders the cells less recognized by the host EBV-specific immunosurveillance. In addition, downregulation of STAT1 increases the expression of LMP2A and lytic cycle antigens and results in a higher proportion of cells entering the lytic cycle. These results suggest that STAT1 is involved in maintaining the latency III viral program observed in transformed B cells and regulating immunorecognition by EBV-specific T cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.011627-0
2009-09-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/9/2239.html?itemId=/content/journal/jgv/10.1099/vir.0.011627-0&mimeType=html&fmt=ahah

References

  1. Abbot, S. D., Rowe, M., Cadwallader, K., Ricksten, A., Gordon, J., Wang, F., Rymo, L. & Rickinson, A. B. ( 1990; ). Epstein–Barr virus nuclear antigen 2 induces expression of the virus-encoded latent membrane protein. J Virol 64, 2126–2134.
    [Google Scholar]
  2. Bell, A. I., Groves, K., Kelly, G. L., Croom-Carter, D., Hui, E., Chan, A. T. & Rickinson, A. B. ( 2006; ). Analysis of Epstein–Barr virus latent gene expression in endemic Burkitt's lymphoma and nasopharyngeal carcinoma tumour cells by using quantitative real-time PCR assays. J Gen Virol 87, 2885–2890.[CrossRef]
    [Google Scholar]
  3. Blake, N., Lee, S., Redchenko, I., Thomas, W., Steven, N., Leese, A., Steigerwald-Mullen, P., Kurilla, M. G., Frappier, L. & Rickinson, A. ( 1997; ). Human CD8+ T cell responses to EBV EBNA1: HLA class I presentation of the (Gly-Ala)-containing protein requires exogenous processing. Immunity 7, 791–802.[CrossRef]
    [Google Scholar]
  4. Chang, C. H., Hammer, J., Loh, J. E., Fodor, W. L. & Flavell, R. A. ( 1992; ). The activation of major histocompatibility complex class I genes by interferon regulatory factor-1 (IRF-1). Immunogenetics 35, 378–384.
    [Google Scholar]
  5. Chatterjee-Kishore, M., Wright, K. L., Ting, J. P. & Stark, G. R. ( 2000; ). How STAT1 mediates constitutive gene expression: a complex of unphosphorylated STAT1 and IRF1 supports transcription of the LMP2 gene. EMBO J 19, 4111–4122.[CrossRef]
    [Google Scholar]
  6. Chen, H., Lee, J. M., Wang, Y., Huang, D. P., Ambinder, R. F. & Hayward, S. D. ( 1999; ). The Epstein–Barr virus latency BamHI-Q promoter is positively regulated by STATs and Zta interference with JAK/STAT activation leads to loss of BamHI-Q promoter activity. Proc Natl Acad Sci U S A 96, 9339–9344.[CrossRef]
    [Google Scholar]
  7. Chen, H., Lee, J. M., Zong, Y., Borowitz, M., Ng, M. H., Ambinder, R. F. & Hayward, S. D. ( 2001; ). Linkage between STAT regulation and Epstein–Barr virus gene expression in tumors. J Virol 75, 2929–2937.[CrossRef]
    [Google Scholar]
  8. Chen, A., Divisconte, M., Jiang, X., Quink, C. & Wang, F. ( 2005; ). Epstein–Barr virus with the latent infection nuclear antigen 3B completely deleted is still competent for B-cell growth transformation in vitro. J Virol 79, 4506–4509.[CrossRef]
    [Google Scholar]
  9. Danos, O. & Mulligan, R. C. ( 1988; ). Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc Natl Acad Sci U S A 85, 6460–6464.[CrossRef]
    [Google Scholar]
  10. Darnell, J. E., Jr, Kerr, I. M. & Stark, G. R. ( 1994; ). Jak–STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421.[CrossRef]
    [Google Scholar]
  11. Didcock, L., Young, D. F., Goodbourn, S. & Randall, R. E. ( 1999; ). The V protein of simian virus 5 inhibits interferon signalling by targeting STAT1 for proteasome-mediated degradation. J Virol 73, 9928–9933.
    [Google Scholar]
  12. Fagard, R., Mouas, H., Dusanter-Fourt, I., Devillers, C., Bissieres, P., Martin, A., Lenoir, G., VanTan, H., Feuillard, J. & Raphael, M. ( 2002; ). Resistance to fludarabine-induced apoptosis in Epstein–Barr virus infected B cells. Oncogene 21, 4473–4480.[CrossRef]
    [Google Scholar]
  13. Fåhraeus, R., Jansson, A., Ricksten, A., Sjöblom, A. & Rymo, L. ( 1990; ). Epstein–Barr virus-encoded nuclear antigen 2 activates the viral latent membrane protein promoter by modulating the activity of a negative regulatory element. Proc Natl Acad Sci U S A 87, 7390–7394.[CrossRef]
    [Google Scholar]
  14. Frank, D. A., Mahajan, S. & Ritz, J. ( 1999; ). Fludarabine-induced immunosuppression is associated with inhibition of STAT1 signaling. Nat Med 5, 444–447.[CrossRef]
    [Google Scholar]
  15. Fruehling, S., Lee, S. K., Herrold, R., Frech, B., Laux, G., Kremmer, E., Grässer, F. A. & Longnecker, R. ( 1996; ). Identification of latent membrane protein 2A (LMP2A) domains essential for the LMP2A dominant-negative effect on B-lymphocyte surface immunoglobulin signal transduction. J Virol 70, 6216–6226.
    [Google Scholar]
  16. Gavioli, R., Kurilla, M. G., de Campos-Lima, P. O., Wallace, L. E., Dolcetti, R., Murray, R. J., Rickinson, A. B. & Masucci, M. G. ( 1993; ). Multiple HLA A11-restricted cytotoxic T-lymphocyte epitopes of different immunogenicities in the Epstein–Barr virus-encoded nuclear antigen 4. J Virol 67, 1572–1578.
    [Google Scholar]
  17. Gires, O., Zimber-Strobl, U., Gonnella, R., Ueffing, M., Marschall, G., Zeidler, R., Pich, D. & Hammerschmidt, W. ( 1997; ). Latent membrane protein 1 of Epstein–Barr virus mimics a constitutively active receptor molecule. EMBO J 16, 6131–6140.[CrossRef]
    [Google Scholar]
  18. Habeshaw, G., Yao, Q. Y., Bell, A. I., Morton, D. & Rickinson, A. B. ( 1999; ). Epstein–Barr virus nuclear antigen 1 sequences in endemic and sporadic Burkitt's lymphoma reflect virus strains prevalent in different geographic areas. J Virol 73, 965–975.
    [Google Scholar]
  19. Hislop, A. D., Ressing, M. E., van Leeuwen, D., Pudney, V. A., Horst, D., Koppers-Lalic, D., Croft, N. P., Neefjes, J. J., Rickinson, A. B. & Wiertz, E. J. H. J. ( 2007; ). A CD8+ T cell immune evasion protein specific to Epstein–Barr virus and its close relatives in Old World primates. J Exp Med 204, 1863–1873.[CrossRef]
    [Google Scholar]
  20. Hobart, M., Ramassar, V., Goes, N., Urmson, J. & Halloran, P. F. ( 1997; ). IFN regulatory factor-1 plays a central role in the regulation of the expression of class I and II MHC genes in vivo. J Immunol 158, 4260–4269.
    [Google Scholar]
  21. Horvath, C. M. ( 2004; ). Weapons of STAT destruction. Interferon evasion by paramyxovirus V protein. Eur J Biochem 271, 4621–4628.[CrossRef]
    [Google Scholar]
  22. Huen, D. S., Henderson, S. A., Croom-Carter, D. & Rowe, M. ( 1995; ). The Epstein–Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-κB and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene 10, 549–560.
    [Google Scholar]
  23. Katz, B. Z. & Saini, U. ( 1992; ). Presence of the diffuse early antigen of Epstein–Barr virus in lymphomas and lymphoproliferative disorders. Am J Pathol 140, 1247–1254.
    [Google Scholar]
  24. Kaye, K. M., Izumi, K. M. & Kieff, E. ( 1993; ). Epstein–Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci U S A 90, 9150–9154.[CrossRef]
    [Google Scholar]
  25. Keating, S., Prince, S., Jones, M. & Rowe, M. ( 2002; ). The lytic cycle of Epstein–Barr virus is associated with decreased expression of cell surface major histocompatibility complex class I and class II molecules. J Virol 76, 8179–8188.[CrossRef]
    [Google Scholar]
  26. Kelly, G., Bell, A. & Rickinson, A. ( 2002; ). Epstein–Barr virus-associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA2. Nat Med 8, 1098–1104.[CrossRef]
    [Google Scholar]
  27. Kieff, E. D. & Rickinson, A. B. ( 2007; ). Epstein–Barr virus and its replication. In Fields Virology, pp. 2603–2654. Edited by D. M. Knipe and P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  28. Kilger, E., Kieser, A., Baumann, M. & Hammerschmidt, W. ( 1998; ). Epstein–Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J 17, 1700–1709.[CrossRef]
    [Google Scholar]
  29. King, W., Thomas-Powell, A. L., Raab-Traub, N., Hawke, M. & Kieff, E. ( 1980; ). Epstein–Barr virus RNA. V. Viral RNA in a restringently infected, growth-transformed cell line. J Virol 36, 506–518.
    [Google Scholar]
  30. Le Clorennec, C., Youlyouz-Marfak, I., Adriaenssens, E., Coll, J., Bornkamm, G. W. & Feuillard, J. ( 2006; ). EBV latency III immortalization program sensitizes B cells to induction of CD95-mediated apoptosis via LMP1: role of NF-κB, STAT1, and p53. Blood 107, 2070–2078.[CrossRef]
    [Google Scholar]
  31. Lee, C. K., Gimeno, R. & Levy, D. E. ( 1999; ). Differential regulation of constitutive major histocompatibility complex class I expression in T and B lymphocytes. J Exp Med 190, 1451–1464.[CrossRef]
    [Google Scholar]
  32. Long, H. M., Haigh, T. A., Gudgeon, N. H., Leen, A. M., Tsang, C. W., Brooks, J., Landais, E., Houssaint, E., Lee, S. P. & other authors ( 2005; ). CD4+ T-cell responses to Epstein–Barr virus (EBV) latent-cycle antigens and the recognition of EBV-transformed lymphoblastoid cell lines. J Virol 79, 4896–4907.[CrossRef]
    [Google Scholar]
  33. Maunders, M. J., Petti, L. & Rowe, M. ( 1994; ). Precipitation of the Epstein–Barr virus protein EBNA 2 by an EBNA 3c-specific monoclonal antibody. J Gen Virol 75, 769–778.[CrossRef]
    [Google Scholar]
  34. McLaren, J., Rowe, M. & Brennan, P. ( 2007; ). Epstein–Barr virus induces a distinct form of DNA-bound STAT1 compared with that found in interferon-stimulated B lymphocytes. J Gen Virol 88, 1876–1886.[CrossRef]
    [Google Scholar]
  35. Meraz, M. A., White, J. M., Sheehan, K. C., Bach, E. A., Rodig, S. J., Dighe, A. S., Kaplan, D. H., Riley, J. K., Greenlund, A. C. & other authors ( 1996; ). Targeted disruption of the STAT1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84, 431–442.[CrossRef]
    [Google Scholar]
  36. Morgenstern, J. P. & Land, H. ( 1990; ). Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res 18, 3587–3596.[CrossRef]
    [Google Scholar]
  37. Müller, M., Laxton, C., Briscoe, J., Schindler, C., Improta, T., Darnell, J. E., Jr, Stark, G. R. & Kerr, I. M. ( 1993; ). Complementation of a mutant cell line: central role of the 91 kDa polypeptide of ISGF3 in the interferon-alpha and -gamma signal transduction pathways. EMBO J 12, 4221–4228.
    [Google Scholar]
  38. Najjar, I., Baran-Marszak, F., Le Clorennec, C., Laguillier, C., Schischmanoff, O., Youlyouz-Marfak, I., Schlee, M., Bornkamm, G. W., Raphaël, M. & other authors ( 2005; ). Latent membrane protein 1 regulates STAT1 through NF-κB-dependent interferon secretion in Epstein–Barr virus-immortalized B cells. J Virol 79, 4936–4943.[CrossRef]
    [Google Scholar]
  39. Nonkwelo, C., Skinner, J., Bell, A., Rickinson, A. & Sample, J. ( 1996; ). Transcription start sites downstream of the Epstein–Barr virus (EBV) Fp promoter in early-passage Burkitt lymphoma cells define a fourth promoter for expression of the EBV EBNA-1 protein. J Virol 70, 623–627.
    [Google Scholar]
  40. Pappworth, I. Y., Wang, E. C. & Rowe, M. ( 2007; ). The switch from latent to productive infection in Epstein–Barr virus-infected B-cells is associated with sensitization to NK cell killing. J Virol 81, 474–482.[CrossRef]
    [Google Scholar]
  41. Plunkett, W., Gandhi, V., Huang, P., Robertson, L. E., Yang, L. Y., Gregoire, V., Estey, E. & Keating, M. J. ( 1993; ). Fludarabine: pharmacokinetics, mechanisms of action, and rationales for combination therapies. Semin Oncol 20, 2–12.
    [Google Scholar]
  42. Precious, B., Young, D. F., Bermingham, A., Fearns, R., Ryan, M. & Randall, R. E. ( 1995; ). Inducible expression of the P, V, and NP genes of the paramyxovirus simian virus 5 in cell lines and an examination of NP-P and NP-V interactions. J Virol 69, 8001–8010.
    [Google Scholar]
  43. Precious, B., Childs, K., Fitzpatrick-Swallow, V., Goodbourn, S. & Randall, R. E. ( 2005; ). Simian virus 5 V protein acts as an adaptor, linking DDB1 to STAT2, to facilitate the ubiquitination of STAT1. J Virol 79, 13434–13441.[CrossRef]
    [Google Scholar]
  44. Randall, R. E., Young, D. F., Goswami, K. K. & Russell, W. C. ( 1987; ). Isolation and characterization of monoclonal antibodies to simian virus 5 and their use in revealing antigenic differences between human, canine and simian isolates. J Gen Virol 68, 2769–2780.[CrossRef]
    [Google Scholar]
  45. Rea, D., Delecluse, H. J., Hamilton-Dutoit, S. J., Marelle, L., Joab, I., Edelman, L., Finet, J. F. & Raphael, M. ( 1994; ). Epstein–Barr virus latent and replicative gene expression in post-transplant lymphoproliferative disorders and AIDS-related non-Hodgkin's lymphomas. French Study Group of Pathology for HIV-associated Tumors. Ann Oncol 5 (Suppl 1), 113–116.
    [Google Scholar]
  46. Ressing, M. E., Keating, S. E., van Leeuwen, D., Koppers-Lalic, D., Pappworth, I. Y., Wiertz, E. J. & Rowe, M. ( 2005; ). Impaired transporter associated with antigen processing-dependent peptide transport during productive EBV infection. J Immunol 174, 6829–6838.[CrossRef]
    [Google Scholar]
  47. Richardson, C., Fielding, C., Rowe, M. & Brennan, P. ( 2003; ). Epstein–Barr virus regulates STAT1 through latent membrane protein 1. J Virol 77, 4439–4443.[CrossRef]
    [Google Scholar]
  48. Richardson, C., Brennan, P., Powell, M., Prince, S., Chen, Y. H., Spiller, O. B. & Rowe, M. ( 2005; ). Susceptibility of B lymphocytes to adenovirus type 5 infection is dependent upon both coxsackie–adenovirus receptor and αvβ5 integrin expression. J Gen Virol 86, 1669–1679.[CrossRef]
    [Google Scholar]
  49. Rickinson, A. B. & Kieff, E. ( 2007; ). Epstein–Barr virus. In Fields Virology, pp. 2655–2700. Edited by D. M. Knipe and P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  50. Rickinson, A. B. & Moss, D. J. ( 1997; ). Human cytotoxic T lymphocyte responses to Epstein–Barr virus infection. Annu Rev Immunol 15, 405–431.[CrossRef]
    [Google Scholar]
  51. Rooney, C. M., Gregory, C. D., Rowe, M., Finerty, S., Edwards, C., Rupani, H. & Rickinson, A. B. ( 1986; ). Endemic Burkitt's lymphoma: phenotypic analysis of tumor biopsy cells and of derived tumor cell lines. J Natl Cancer Inst 77, 681–687.
    [Google Scholar]
  52. Rowe, M. & Jones, M. ( 2001; ). Detection of EBV latent proteins by Western blotting. Methods Mol Biol 174, 229–242.
    [Google Scholar]
  53. Rowe, M., Rowe, D. T., Gregory, C. D., Young, L. S., Farrell, P. J., Rupani, H. & Rickinson, A. B. ( 1987; ). Differences in B cell growth phenotype reflect novel patterns of Epstein–Barr virus latent gene expression in Burkitt's lymphoma cells. EMBO J 6, 2743–2751.
    [Google Scholar]
  54. Rowe, M., Young, L. S., Cadwallader, K., Petti, L., Kieff, E. & Rickinson, A. B. ( 1989; ). Distinction between Epstein–Barr virus type A (EBNA 2A) and type B (EBNA 2B) isolates extends to the EBNA 3 family of nuclear proteins. J Virol 63, 1031–1039.
    [Google Scholar]
  55. Rowe, M., Lear, A. L., Croom-Carter, D., Davies, A. H. & Rickinson, A. B. ( 1992; ). Three pathways of Epstein–Barr virus gene activation from EBNA1-positive latency in B lymphocytes. J Virol 66, 122–131.
    [Google Scholar]
  56. Rowe, M., Khanna, R., Jacob, C. A., Argaet, V., Kelly, A., Powis, S., Belich, M., Croom-Carter, D., Lee, S. & other authors ( 1995; ). Restoration of endogenous antigen processing in Burkitt's lymphoma cells by Epstein–Barr virus latent membrane protein-1: coordinate up-regulation of peptide transporters and HLA-class I antigen expression. Eur J Immunol 25, 1374–1384.[CrossRef]
    [Google Scholar]
  57. Rowe, M., Glaunsinger, B., van Leeuwen, D., Zuo, J., Sweetman, D., Ganem, D., Middeldorp, J., Wiertz, E. J. H. J. & Ressing, M. E. ( 2007; ). Host shutoff during productive Epstein–Barr virus infection is mediated by BGLF5 and may contribute to immune evasion. Proc Natl Acad Sci U S A 104, 3366–3371.[CrossRef]
    [Google Scholar]
  58. Salamon, D., Takacs, M., Schwarzmann, F., Wolf, H., Minarovits, J. & Niller, H. H. ( 2003; ). High-resolution methylation analysis and in vivo protein–DNA binding at the promoter of the viral oncogene LMP2A in B cell lines carrying latent Epstein–Barr virus genomes. Virus Genes 27, 57–66.[CrossRef]
    [Google Scholar]
  59. Sample, J., Hummel, M., Braun, D., Birkenbach, M. & Kieff, E. ( 1986; ). Nucleotide sequences of mRNAs encoding Epstein–Barr virus nuclear proteins: a probable transcriptional initiation site. Proc Natl Acad Sci U S A 83, 5096–5100.[CrossRef]
    [Google Scholar]
  60. Schaadt, E., Baier, B., Mautner, J., Bornkamm, G. W. & Adler, B. ( 2005; ). Epstein–Barr virus latent membrane protein 2A mimics B-cell receptor-dependent virus reactivation. J Gen Virol 86, 551–559.[CrossRef]
    [Google Scholar]
  61. Schaefer, B. C., Strominger, J. L. & Speck, S. H. ( 1995; ). Redefining the Epstein–Barr virus-encoded nuclear antigen EBNA-1 gene promoter and transcription initiation site in group I Burkitt lymphoma cell lines. Proc Natl Acad Sci U S A 92, 10565–10569.[CrossRef]
    [Google Scholar]
  62. Schaefer, B. C., Paulson, E., Strominger, J. L. & Speck, S. H. ( 1997; ). Constitutive activation of Epstein-Barr virus (EBV) nuclear antigen 1 gene transcription by IRF1 and IRF2 during restricted EBV latency. Mol Cell Biol 17, 873–886.
    [Google Scholar]
  63. Takakuwa, T., Luo, W. J., Ham, M. F., Wada, N. & Aozasa, K. ( 2005; ). Identification of Epstein–Barr virus integrated sites in lymphoblastoid cell line (IB4). Virus Res 108, 133–138.[CrossRef]
    [Google Scholar]
  64. Tanner, J. E. & Alfieri, C. ( 2001; ). The Epstein-Barr virus and post-transplant lymphoproliferative disease: interplay of immunosuppression, EBV, and the immune system in disease pathogenesis. Transpl Infect Dis 3, 60–69.[CrossRef]
    [Google Scholar]
  65. Tonks, A., Tonks, A. J., Pearn, L., Mohamad, Z., Burnett, A. K. & Darley, R. L. ( 2005; ). Optimized retroviral transduction protocol which preserves the primitive subpopulation of human hematopoietic cells. Biotechnol Prog 21, 953–958.
    [Google Scholar]
  66. Verma, D. & Swaminathan, S. ( 2008; ). Epstein–Barr virus SM protein functions as an alternative splicing factor. J Virol 82, 7180–7188.[CrossRef]
    [Google Scholar]
  67. Wang, D., Liebowitz, D., Wang, F., Gregory, C., Rickinson, A., Larson, R., Springer, T. & Kieff, E. ( 1988; ). Epstein–Barr virus latent infection membrane protein alters the human B-lymphocyte phenotype: deletion of the amino terminus abolishes activity. J Virol 62, 4173–4184.
    [Google Scholar]
  68. Wilson, G. & Miller, G. ( 1979; ). Recovery of Epstein–Barr virus from nonproducer neonatal human lymphoid cell transformants. Virology 95, 351–358.[CrossRef]
    [Google Scholar]
  69. Woisetschlaeger, M., Strominger, J. L. & Speck, S. H. ( 1989; ). Mutually exclusive use of viral promoters in Epstein–Barr virus latently infected lymphocytes. Proc Natl Acad Sci U S A 86, 6498–6502.[CrossRef]
    [Google Scholar]
  70. Young, L., Alfieri, C., Hennessy, K., Evans, H., O'Hara, C., Anderson, K. C., Ritz, J., Shapiro, R. S., Rickinson, A. & Kieff, E. ( 1989; ). Expression of Epstein–Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. N Engl J Med 321, 1080–1085.[CrossRef]
    [Google Scholar]
  71. Young, L. S., Lau, R., Rowe, M., Niedobitek, G., Packham, G., Shanahan, F., Rowe, D. T., Greenspan, D., Greenspan, J. S. & other authors ( 1991; ). Differentiation-associated expression of the Epstein–Barr virus BZLF1 transactivator protein in oral hairy leukoplakia. J Virol 65, 2868–2874.
    [Google Scholar]
  72. Zhang, L., Hong, K., Zhang, J. & Pagano, J. S. ( 2004; ). Multiple signal transducers and activators of transcription are induced by EBV LMP-1. Virology 323, 141–152.[CrossRef]
    [Google Scholar]
  73. Zimber-Strobl, U., Suentzenich, K. O., Laux, G., Eick, D., Cordier, M., Calender, A., Billaud, M., Lenoir, G. M. & Bornkamm, G. W. ( 1991; ). Epstein–Barr virus nuclear antigen 2 activates transcription of the terminal protein gene. J Virol 65, 415–423.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.011627-0
Loading
/content/journal/jgv/10.1099/vir.0.011627-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error