1887

Abstract

Clathrin- and caveolae-mediated endocytosis have been implicated in the productive entry of many viruses into host cells. ADP-ribosylation factor 6 (Arf6)-dependent endocytosis is another endocytosis pathway that traffics from the cell surface and it is the only Arf that traffics at the plasma membrane. However, little is known about Arf6-dependent trafficking during virus entry. This study showed that coxsackievirus type B3 (CVB3) associated with decay-accelerating factor in non-polarized HeLa cells can be redirected into non-productive compartments by Arf6-dependent internalization, thus restricting infection. Overexpression of wild-type (WT) and constitutively active (CA) Arf6 in HeLa cells resulted in a 2.3- and 3.6-fold decrease in infection, respectively. A dominant-negative inhibitor of Arf6 recovered restriction of infection by WT-Arf6 and CA-Arf6. RNA interference of endogenous Arf6 resulted in a 3.3-fold increase in CVB3 titre in HeLa cells. It was shown that coxsackie–adenovirus receptor (CAR) ligation by virus or CAR-specific antibody could activate extracellular signal-regulated kinase (ERK) of the mitogen-activated protein kinase family and lead to Arf6-mediated viral restriction. In the absence of ERK activation, CVB3 internalization into early endosomes was inhibited and subsequent infection was reduced, but Arf6-mediated restriction was also abolished. In conclusion, receptor-mediated signalling enhances CVB3 entry whilst also activating non-productive pathways of virus entry; thus, virus infection is an equilibrium of productive and non-productive pathways of entry.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.005868-0
2009-04-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/4/854.html?itemId=/content/journal/jgv/10.1099/vir.0.005868-0&mimeType=html&fmt=ahah

References

  1. Ashbourne Excoffon, K. J. D., Moninger, T. & Zabner, J. ( 2003; ). The coxsackie B virus and adenovirus receptor resides in a distinct membrane microdomain. J Virol 77, 2559–2567.[CrossRef]
    [Google Scholar]
  2. Balasubramanian, N., Scott, D. W., Castle, J. D., Casanova, J. E. & Schwartz, M. A. ( 2007; ). Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts. Nat Cell Biol 9, 1381–1391.[CrossRef]
    [Google Scholar]
  3. Chung, S. K., Kim, J. Y., Kim, I. B., Park, S. I., Paek, K. H. & Nam, J. H. ( 2005; ). Internalization and trafficking mechanisms of coxsackievirus B3 in HeLa cells. Virology 333, 31–40.[CrossRef]
    [Google Scholar]
  4. Coyne, C. B. & Bergelson, J. M. ( 2006; ). Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 124, 119–131.[CrossRef]
    [Google Scholar]
  5. de Magalhaes, J. C., Andrade, A. A., Silva, P. N., Sousa, L. P., Ropert, C., Ferreira, P. C., Kroon, E. G., Gazzinelli, R. T. & Bonjardim, C. A. ( 2001; ). A mitogenic signal triggered at an early stage of vaccinia virus infection: implication of MEK/ERK and protein kinase A in virus multiplication. J Biol Chem 276, 38353–38360.[CrossRef]
    [Google Scholar]
  6. Demaison, C., Parsley, K., Brouns, G., Scherr, M., Battmer, K., Kinnon, C., Grez, M. & Thrasher, A. J. ( 2002; ). High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 13, 803–813.[CrossRef]
    [Google Scholar]
  7. Donaldson, J. G. ( 2003; ). Multiple roles for Arf6: sorting, structuring, and signaling at the plasma membrane. J Biol Chem 278, 41573–41576.[CrossRef]
    [Google Scholar]
  8. Dyer, N., Rebollo, E., Domínguez, P., Elkhatib, N., Chavrier, P., Daviet, L., González, C. & González-Gaitán, M. ( 2007; ). Spermatocyte cytokinesis requires rapid membrane addition mediated by ARF6 on central spindle recycling endosomes. Development 134, 4437–4447.[CrossRef]
    [Google Scholar]
  9. Feuer, R., Mena, I., Pagarigan, R., Slifka, M. K. & Whitton, J. L. ( 2002; ). Cell cycle status affects coxsackievirus replication, persistence, and reactivation in vitro. J Virol 76, 4430–4440.[CrossRef]
    [Google Scholar]
  10. Galperin, E. & Sorkin, A. ( 2008; ). Endosomal targeting of MEK2 requires RAF, MEK kinase activity and clathrin-dependent endocytosis. Traffic 9, 1776–1790.[CrossRef]
    [Google Scholar]
  11. Karacsonyi, C., Miguel, A. S. & Puertollano, R. ( 2007; ). Mucolipin-2 localizes to the Arf6-associated pathway and regulates recycling of GPI-APs. Traffic 8, 1404–1414.[CrossRef]
    [Google Scholar]
  12. Khundmiri, S. J., Bertorello, A. M., Delamere, N. A. & Lederer, E. D. ( 2004; ). Clathrin-mediated endocytosis of Na+,K+-ATPase in response to parathyroid hormone requires ERK-dependent phosphorylation of Ser-11 within the α1-subunit. J Biol Chem 279, 17418–17427.[CrossRef]
    [Google Scholar]
  13. Klemke, R. L., Cai, S., Giannini, A. L., Gallagher, P. J., de Lanerolle, P. & Cheresh, D. A. ( 1997; ). Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol 137, 481–492.[CrossRef]
    [Google Scholar]
  14. Luo, H., Yanagawa, B., Zhang, J., Luo, Z., Zhang, M., Esfandiarei, M., Carthy, C., Wilson, J. E., Yang, D. & McManus, B. M. ( 2002; ). Coxsackievirus B3 replication is reduced by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. J Virol 76, 3365–3373.[CrossRef]
    [Google Scholar]
  15. Marchant, D., Neil, S. J., Aubin, K., Schmitz, C. & McKnight, A. ( 2005; ). An envelope-determined, pH-independent endocytic route of viral entry determines the susceptibility of human immunodeficiency virus type 1 (HIV-1) and HIV-2 to Lv2 restriction. J Virol 79, 9410–9418.[CrossRef]
    [Google Scholar]
  16. Marsh, M. & Helenius, A. ( 2006; ). Virus entry: open sesame. Cell 124, 729–740.[CrossRef]
    [Google Scholar]
  17. Mercer, J. & Helenius, A. ( 2008; ). Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320, 531–535.[CrossRef]
    [Google Scholar]
  18. Naslavsky, N., Weigert, R. & Donaldson, J. G. ( 2004; ). Characterization of a nonclathrin endocytic pathway: membrane cargo and lipid requirements. Mol Biol Cell 15, 3542–3552.[CrossRef]
    [Google Scholar]
  19. Opavsky, M. A., Martino, T., Rabinovitch, M., Penninger, J., Richardson, C., Petric, M., Trinidad, C., Butcher, L., Chan, J. & Liu, P. P. ( 2002; ). Enhanced ERK-1/2 activation in mice susceptible to coxsackievirus-induced myocarditis. J Clin Invest 109, 1561–1569.[CrossRef]
    [Google Scholar]
  20. Palacios, F., Price, L., Schweitzer, J., Collard, J. G. & D'Souza-Schorey, C. ( 2001; ). An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. EMBO J 20, 4973–4986.[CrossRef]
    [Google Scholar]
  21. Pelkmans, L., Fava, E., Grabner, H., Hannus, M., Habermann, B., Krausz, E. & Zerial, M. ( 2005; ). Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436, 78–86.[CrossRef]
    [Google Scholar]
  22. Peters, P. J., Hsu, V. W., Ooi, C. E., Finazzi, D., Teal, S. B., Oorschot, V., Donaldson, J. G. & Klausner, R. D. ( 1995; ). Overexpression of wild-type and mutant ARF1 and ARF6: distinct perturbations of nonoverlapping membrane compartments. J Cell Biol 128, 1003–1017.[CrossRef]
    [Google Scholar]
  23. Popik, W., Hesselgesser, J. E. & Pitha, P. M. ( 1998; ). Binding of human immunodeficiency virus type 1 to CD4 and CXCR4 receptors differentially regulates expression of inflammatory genes and activates the MEK/ERK signaling pathway. J Virol 72, 6406–6413.
    [Google Scholar]
  24. Robertson, S. E., Setty, S. R., Sitaram, A., Marks, M. S., Lewis, R. E. & Chou, M. M. ( 2006; ). Extracellular signal-regulated kinase regulates clathrin-independent endosomal trafficking. Mol Biol Cell 17, 645–657.
    [Google Scholar]
  25. Sabharanjak, S., Sharma, P., Parton, R. G. & Mayor, S. ( 2002; ). GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev Cell 2, 411–423.[CrossRef]
    [Google Scholar]
  26. Si, X., Luo, H., Morgan, A., Zhang, J., Wong, J., Yuan, J., Esfandiarei, M., Gao, G., Cheung, C. & McManus, B. M. ( 2005; ). Stress-activated protein kinases are involved in coxsackievirus B3 viral progeny release. J Virol 79, 13875–13881.[CrossRef]
    [Google Scholar]
  27. Sieczkarski, S. B. & Whittaker, G. R. ( 2002; ). Dissecting virus entry via endocytosis. J Gen Virol 83, 1535–1545.
    [Google Scholar]
  28. Slifka, M. K., Pagarigan, R., Mena, I., Feuer, R. & Whitton, J. L. ( 2001; ). Using recombinant coxsackievirus B3 to evaluate the induction and protective efficacy of CD8+ T cells during picornavirus infection. J Virol 75, 2377–2387.[CrossRef]
    [Google Scholar]
  29. Song, J., Khachikian, Z., Radhakrishna, H. & Donaldson, J. G. ( 1998; ). Localization of endogenous ARF6 to sites of cortical actin rearrangement and involvement of ARF6 in cell spreading. J Cell Sci 111, 2257–2267.
    [Google Scholar]
  30. Sun, X., Yau, V. K., Briggs, B. J. & Whittaker, G. R. ( 2005; ). Role of clathrin-mediated endocytosis during vesicular stomatitis virus entry into host cells. Virology 338, 53–60.[CrossRef]
    [Google Scholar]
  31. Towers, G., Bock, M., Martin, S., Takeuchi, Y., Stoye, J. P. & Danos, O. ( 2000; ). A conserved mechanism of retrovirus restriction in mammals. Proc Natl Acad Sci U S A 97, 12295–12299.[CrossRef]
    [Google Scholar]
  32. Tushir, J. S. & D'Souza-Schorey, C. ( 2007; ). ARF6-dependent activation of ERK and Rac1 modulates epithelial tubule development. EMBO J 26, 1806–1819.[CrossRef]
    [Google Scholar]
  33. Yee, J. K., Miyanohara, A., LaPorte, P., Bouic, K., Burns, J. C. & Friedmann, T. ( 1994; ). A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proc Natl Acad Sci U S A 91, 9564–9568.[CrossRef]
    [Google Scholar]
  34. Zufferey, R., Nagy, D., Mandel, R. J., Naldini, L. & Trono, D. ( 1997; ). Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15, 871–875.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.005868-0
Loading
/content/journal/jgv/10.1099/vir.0.005868-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error