1887

Abstract

Clathrin- and caveolae-mediated endocytosis have been implicated in the productive entry of many viruses into host cells. ADP-ribosylation factor 6 (Arf6)-dependent endocytosis is another endocytosis pathway that traffics from the cell surface and it is the only Arf that traffics at the plasma membrane. However, little is known about Arf6-dependent trafficking during virus entry. This study showed that coxsackievirus type B3 (CVB3) associated with decay-accelerating factor in non-polarized HeLa cells can be redirected into non-productive compartments by Arf6-dependent internalization, thus restricting infection. Overexpression of wild-type (WT) and constitutively active (CA) Arf6 in HeLa cells resulted in a 2.3- and 3.6-fold decrease in infection, respectively. A dominant-negative inhibitor of Arf6 recovered restriction of infection by WT-Arf6 and CA-Arf6. RNA interference of endogenous Arf6 resulted in a 3.3-fold increase in CVB3 titre in HeLa cells. It was shown that coxsackie–adenovirus receptor (CAR) ligation by virus or CAR-specific antibody could activate extracellular signal-regulated kinase (ERK) of the mitogen-activated protein kinase family and lead to Arf6-mediated viral restriction. In the absence of ERK activation, CVB3 internalization into early endosomes was inhibited and subsequent infection was reduced, but Arf6-mediated restriction was also abolished. In conclusion, receptor-mediated signalling enhances CVB3 entry whilst also activating non-productive pathways of virus entry; thus, virus infection is an equilibrium of productive and non-productive pathways of entry.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.005868-0
2009-04-01
2020-09-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/4/854.html?itemId=/content/journal/jgv/10.1099/vir.0.005868-0&mimeType=html&fmt=ahah

References

  1. Ashbourne Excoffon K. J. D., Moninger T., Zabner J. 2003; The coxsackie B virus and adenovirus receptor resides in a distinct membrane microdomain. J Virol 77:2559–2567 [CrossRef]
    [Google Scholar]
  2. Balasubramanian N., Scott D. W., Castle J. D., Casanova J. E., Schwartz M. A. 2007; Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts. Nat Cell Biol 9:1381–1391 [CrossRef]
    [Google Scholar]
  3. Chung S. K., Kim J. Y., Kim I. B., Park S. I., Paek K. H., Nam J. H. 2005; Internalization and trafficking mechanisms of coxsackievirus B3 in HeLa cells. Virology 333:31–40 [CrossRef]
    [Google Scholar]
  4. Coyne C. B., Bergelson J. M. 2006; Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 124:119–131 [CrossRef]
    [Google Scholar]
  5. de Magalhaes J. C., Andrade A. A., Silva P. N., Sousa L. P., Ropert C., Ferreira P. C., Kroon E. G., Gazzinelli R. T., Bonjardim C. A. 2001; A mitogenic signal triggered at an early stage of vaccinia virus infection: implication of MEK/ERK and protein kinase A in virus multiplication. J Biol Chem 276:38353–38360 [CrossRef]
    [Google Scholar]
  6. Demaison C., Parsley K., Brouns G., Scherr M., Battmer K., Kinnon C., Grez M., Thrasher A. J. 2002; High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 13:803–813 [CrossRef]
    [Google Scholar]
  7. Donaldson J. G. 2003; Multiple roles for Arf6: sorting, structuring, and signaling at the plasma membrane. J Biol Chem 278:41573–41576 [CrossRef]
    [Google Scholar]
  8. Dyer N., Rebollo E., Domínguez P., Elkhatib N., Chavrier P., Daviet L., González C., González-Gaitán M. 2007; Spermatocyte cytokinesis requires rapid membrane addition mediated by ARF6 on central spindle recycling endosomes. Development 134:4437–4447 [CrossRef]
    [Google Scholar]
  9. Feuer R., Mena I., Pagarigan R., Slifka M. K., Whitton J. L. 2002; Cell cycle status affects coxsackievirus replication, persistence, and reactivation in vitro. J Virol 76:4430–4440 [CrossRef]
    [Google Scholar]
  10. Galperin E., Sorkin A. 2008; Endosomal targeting of MEK2 requires RAF, MEK kinase activity and clathrin-dependent endocytosis. Traffic 9:1776–1790 [CrossRef]
    [Google Scholar]
  11. Karacsonyi C., Miguel A. S., Puertollano R. 2007; Mucolipin-2 localizes to the Arf6-associated pathway and regulates recycling of GPI-APs. Traffic 8:1404–1414 [CrossRef]
    [Google Scholar]
  12. Khundmiri S. J., Bertorello A. M., Delamere N. A., Lederer E. D. 2004; Clathrin-mediated endocytosis of Na+,K+-ATPase in response to parathyroid hormone requires ERK-dependent phosphorylation of Ser-11 within the α 1-subunit. J Biol Chem 279:17418–17427 [CrossRef]
    [Google Scholar]
  13. Klemke R. L., Cai S., Giannini A. L., Gallagher P. J., de Lanerolle P., Cheresh D. A. 1997; Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol 137:481–492 [CrossRef]
    [Google Scholar]
  14. Luo H., Yanagawa B., Zhang J., Luo Z., Zhang M., Esfandiarei M., Carthy C., Wilson J. E., Yang D., McManus B. M. 2002; Coxsackievirus B3 replication is reduced by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. J Virol 76:3365–3373 [CrossRef]
    [Google Scholar]
  15. Marchant D., Neil S. J., Aubin K., Schmitz C., McKnight A. 2005; An envelope-determined, pH-independent endocytic route of viral entry determines the susceptibility of human immunodeficiency virus type 1 (HIV-1) and HIV-2 to Lv2 restriction. J Virol 79:9410–9418 [CrossRef]
    [Google Scholar]
  16. Marsh M., Helenius A. 2006; Virus entry: open sesame. Cell 124:729–740 [CrossRef]
    [Google Scholar]
  17. Mercer J., Helenius A. 2008; Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320:531–535 [CrossRef]
    [Google Scholar]
  18. Naslavsky N., Weigert R., Donaldson J. G. 2004; Characterization of a nonclathrin endocytic pathway: membrane cargo and lipid requirements. Mol Biol Cell 15:3542–3552 [CrossRef]
    [Google Scholar]
  19. Opavsky M. A., Martino T., Rabinovitch M., Penninger J., Richardson C., Petric M., Trinidad C., Butcher L., Chan J., Liu P. P. 2002; Enhanced ERK-1/2 activation in mice susceptible to coxsackievirus-induced myocarditis. J Clin Invest 109:1561–1569 [CrossRef]
    [Google Scholar]
  20. Palacios F., Price L., Schweitzer J., Collard J. G., D'Souza-Schorey C. 2001; An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. EMBO J 20:4973–4986 [CrossRef]
    [Google Scholar]
  21. Pelkmans L., Fava E., Grabner H., Hannus M., Habermann B., Krausz E., Zerial M. 2005; Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436:78–86 [CrossRef]
    [Google Scholar]
  22. Peters P. J., Hsu V. W., Ooi C. E., Finazzi D., Teal S. B., Oorschot V., Donaldson J. G., Klausner R. D. 1995; Overexpression of wild-type and mutant ARF1 and ARF6: distinct perturbations of nonoverlapping membrane compartments. J Cell Biol 128:1003–1017 [CrossRef]
    [Google Scholar]
  23. Popik W., Hesselgesser J. E., Pitha P. M. 1998; Binding of human immunodeficiency virus type 1 to CD4 and CXCR4 receptors differentially regulates expression of inflammatory genes and activates the MEK/ERK signaling pathway. J Virol 72:6406–6413
    [Google Scholar]
  24. Robertson S. E., Setty S. R., Sitaram A., Marks M. S., Lewis R. E., Chou M. M. 2006; Extracellular signal-regulated kinase regulates clathrin-independent endosomal trafficking. Mol Biol Cell 17:645–657
    [Google Scholar]
  25. Sabharanjak S., Sharma P., Parton R. G., Mayor S. 2002; GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev Cell 2:411–423 [CrossRef]
    [Google Scholar]
  26. Si X., Luo H., Morgan A., Zhang J., Wong J., Yuan J., Esfandiarei M., Gao G., Cheung C., McManus B. M. 2005; Stress-activated protein kinases are involved in coxsackievirus B3 viral progeny release. J Virol 79:13875–13881 [CrossRef]
    [Google Scholar]
  27. Sieczkarski S. B., Whittaker G. R. 2002; Dissecting virus entry via endocytosis. J Gen Virol 83:1535–1545
    [Google Scholar]
  28. Slifka M. K., Pagarigan R., Mena I., Feuer R., Whitton J. L. 2001; Using recombinant coxsackievirus B3 to evaluate the induction and protective efficacy of CD8+ T cells during picornavirus infection. J Virol 75:2377–2387 [CrossRef]
    [Google Scholar]
  29. Song J., Khachikian Z., Radhakrishna H., Donaldson J. G. 1998; Localization of endogenous ARF6 to sites of cortical actin rearrangement and involvement of ARF6 in cell spreading. J Cell Sci 111:2257–2267
    [Google Scholar]
  30. Sun X., Yau V. K., Briggs B. J., Whittaker G. R. 2005; Role of clathrin-mediated endocytosis during vesicular stomatitis virus entry into host cells. Virology 338:53–60 [CrossRef]
    [Google Scholar]
  31. Towers G., Bock M., Martin S., Takeuchi Y., Stoye J. P., Danos O. 2000; A conserved mechanism of retrovirus restriction in mammals. Proc Natl Acad Sci U S A 97:12295–12299 [CrossRef]
    [Google Scholar]
  32. Tushir J. S., D'Souza-Schorey C. 2007; ARF6-dependent activation of ERK and Rac1 modulates epithelial tubule development. EMBO J 26:1806–1819 [CrossRef]
    [Google Scholar]
  33. Yee J. K., Miyanohara A., LaPorte P., Bouic K., Burns J. C., Friedmann T. 1994; A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proc Natl Acad Sci U S A 91:9564–9568 [CrossRef]
    [Google Scholar]
  34. Zufferey R., Nagy D., Mandel R. J., Naldini L., Trono D. 1997; Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.005868-0
Loading
/content/journal/jgv/10.1099/vir.0.005868-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error