-
Volume 90,
Issue 4,
2009
Volume 90, Issue 4, 2009
- Animal
-
- RNA viruses
-
-
On a mouse monoclonal antibody that neutralizes all four dengue virus serotypes
The flavivirus envelope glycoprotein (E) is responsible for viral attachment and entry by membrane fusion. Its ectodomain is the primary target of the humoral immune response. In particular, the C-terminal Ig-like domain III of E, which is exposed at the surface of the viral particle, forms an attractive antigen for raising protective monoclonal antibodies (mAb). 9F12, a mouse mAb raised against a dengue virus (DENV) serotype 2 recombinant domain III, cross-reacts with corresponding domains from the other three DENV serotypes and also with West Nile virus. mAb 9F12 binds with nanomolar affinity to a conserved epitope that maps to the viral surface comprising residues 305, 307, 310 and 330 of the E protein. mAb 9F12 neutralizes all four DENV serotypes in plaque reduction assays. We expressed a single-chain Fv from 9F12 that retains the binding activity of the parent mAb. Adsorption and fusion inhibition assays indicate that mAb 9F12 prevents early steps of viral entry. Its virus inhibition activity and broad cross-reactivity makes mAb 9F12 a suitable candidate for optimization and humanization into a therapeutic antibody to treat severe infections by dengue.
-
-
-
Increased activity of indoleamine 2,3-dioxygenase in serum from acutely infected dengue patients linked to gamma interferon antiviral function
The depletion of l-tryptophan (L-Trp) has been associated with the inhibition of growth of micro-organisms and also has profound effects on T cell proliferation and immune tolerance. The enzyme indoleamine 2,3-dioxygenase (IDO) catalyses the rate-limiting step in the catabolic pathway of L-Trp. Gene expression analysis has shown upregulation of genes involved in L-Trp catabolism in in vitro models of dengue virus (DENV) infection. To understand the role of IDO during DENV infection, we measured IDO activity in sera from control and DENV-infected patients. We found increased IDO activity, lower levels of L-Trp and higher levels of l-kynurenine in sera from DENV-infected patients during the febrile days of the disease compared with patients with other febrile illnesses and healthy donors. Furthermore, we confirmed upregulation of IDO mRNA expression in response to DENV infection in vitro, using a dendritic cell (DC) model of DENV infection. We found that the antiviral effect of gamma interferon (IFN-γ) in DENV-infected DCs in vitro was partially dependent on IDO activity. Our results demonstrate that IDO plays an important role in the antiviral effect of IFN-γ against DENV infection in vitro and suggest that it has a role in the immune response to DENV infections in vivo.
-
-
-
Japanese encephalitis virus produces a CD4+ Th2 response and associated immunoprotection in an adoptive-transfer murine model
More LessJapanese encephalitis is an acute infection of the central nervous system caused by Japanese encephalitis virus (JEV). The importance of an effective humoral response in preventing JEV infection has already been established, although the contribution of cellular immunity remains unclear. This study used an experimental murine model to understand the protective effects of cell-mediated immunity in JEV infection. Fourteen-day-old mice adoptively transferred with JEV-immune splenocytes were found to be protected from peripheral JEV challenge. The survival rate was reduced when transferred cells were depleted of their CD4+ T-cell population. Correspondingly, increased protection was observed when JEV-primed isolated CD4+ T cells were transferred compared with isolated CD8+ T cells. Mice protected from JEV infection by the adoptive transfer of JEV-immune splenocytes had higher levels of immunomodulatory cytokines and decreased expression of pro-inflammatory cytokines. Concurrent with the increase in Th2 cytokines, JEV-specific IgM and IgG1 antibody titres were found to be elevated in protected mice. Taken together, these data indicate a definite role for CD4+ T cells in protection from lethal JEV infection in naïve 14-day-old mice. Induction of a Th2 cytokine response and IgG1 antibody probably achieves an immunomodulatory effect that results in the enhanced survival of these animals.
-
-
-
Evidence of frequent introductions of Japanese encephalitis virus from south-east Asia and continental east Asia to Japan
The Japanese encephalitis virus (JEV) circulating in Japan consists of viruses with multiple phylogenetic origins. Phylogenetic analysis revealed that some JEV strains have recently migrated from south-east and continental east Asian countries. One phylogenetic subcluster of the JEV strains circulating in Japan was closely related to viruses isolated in Vietnam and China's inland region while other JEV subclusters were related to viruses isolated in Shanghai, China. One virus subcluster, however, was isolated solely in Japan and was not found in any other Asian country. Therefore, our data suggests that the JEVs that have remained or are circulating in Japan include a mixture of viruses that have previously migrated from south-east and continental east Asian countries.
-
-
-
Expression of hepatitis C virus (HCV) structural proteins in trans facilitates encapsidation and transmission of HCV subgenomic RNA
A characteristic of many positive-strand RNA viruses is that, whilst replication of the viral genome is dependent on the expression of the majority of non-structural proteins in cis, virus particle formation can occur when most or all of the structural proteins are co-expressed in trans. Making use of a recently identified hepatitis C virus (HCV) isolate (JFH1) that can be propagated in tissue culture, this study sought to establish whether this is also the case for hepaciviruses. Stable cell lines containing one of two bicistronic replicons derived from the JFH1 isolate were generated that expressed non-structural proteins NS3–5B or NS2–5B. Release and transmission of these replicons to naïve Huh7 cells could then be demonstrated when baculovirus transduction was used to express the HCV proteins absent from the subgenomic replicons. Transmission could be blocked by a neutralizing antibody targeted at the E2 envelope protein, consistent with this phenomenon occurring via trans-encapsidation of replicon RNA into virus-like particles. Transmission was also dependent on expression of NS2, which was most effective at promoting virus particle formation when expressed in cis on the replicon RNA compared with in trans via baculovirus delivery. Density gradient analysis of the particles revealed the presence of a broad infectious peak between 1.06 and 1.11 g ml−1, comparable to that seen when propagating full-length virus in tissue culture. In summary, the trans-encapsidation system described offers a complementary and safer approach to study HCV particle formation and transmission in tissue culture.
-
-
-
Molecular characterization of a novel Ljungan virus (Parechovirus; Picornaviridae) reveals a fourth genotype and indicates ancestral recombination
Ljungan virus (LV) was discovered 20 years ago in Swedish bank voles (Myodes glareolus, previously referred to as Clethrionomys glareolus) during the search for an infectious agent causing lethal myocarditis in young athletes. To date, the genomes of four LV isolates, including the prototype 87-012 strain, have been characterized. Three of these LV strains were isolated from bank voles trapped in Sweden. Sequence analysis of an American virus (M1146), isolated from a montane vole (Microtus montanus) in western USA, indicates that this strain represents a genotype that is different from the Swedish strains. Here, we present genomic analyses of a fifth LV strain (64-7855) isolated from a southern red-backed vole (Myodes gapperi) trapped during arbovirus studies in New York state in the north-eastern USA in the 1960s. Sequence analysis of the 64-7855 genome showed an LV-like genome organization and sequence similarity to other LV strains. Genetic and phylogenetic analyses of the evolutionary relationship between the 64-7855 strain and other viruses within the family Picornaviridae, including previously published LV strains, demonstrated that the 64-7855 strain constitutes a new genotype within the LV species. Analyses also showed that different regions of the 64-7855 genome have different phylogenetic relationships with other LV strains, indicating that previous recombination events have been involved in the evolution of this virus.
-
-
-
ERK MAP kinase-activated Arf6 trafficking directs coxsackievirus type B3 into an unproductive compartment during virus host-cell entry
Clathrin- and caveolae-mediated endocytosis have been implicated in the productive entry of many viruses into host cells. ADP-ribosylation factor 6 (Arf6)-dependent endocytosis is another endocytosis pathway that traffics from the cell surface and it is the only Arf that traffics at the plasma membrane. However, little is known about Arf6-dependent trafficking during virus entry. This study showed that coxsackievirus type B3 (CVB3) associated with decay-accelerating factor in non-polarized HeLa cells can be redirected into non-productive compartments by Arf6-dependent internalization, thus restricting infection. Overexpression of wild-type (WT) and constitutively active (CA) Arf6 in HeLa cells resulted in a 2.3- and 3.6-fold decrease in infection, respectively. A dominant-negative inhibitor of Arf6 recovered restriction of infection by WT-Arf6 and CA-Arf6. RNA interference of endogenous Arf6 resulted in a 3.3-fold increase in CVB3 titre in HeLa cells. It was shown that coxsackie–adenovirus receptor (CAR) ligation by virus or CAR-specific antibody could activate extracellular signal-regulated kinase (ERK) of the mitogen-activated protein kinase family and lead to Arf6-mediated viral restriction. In the absence of ERK activation, CVB3 internalization into early endosomes was inhibited and subsequent infection was reduced, but Arf6-mediated restriction was also abolished. In conclusion, receptor-mediated signalling enhances CVB3 entry whilst also activating non-productive pathways of virus entry; thus, virus infection is an equilibrium of productive and non-productive pathways of entry.
-
-
-
Sequence analysis and comparison of avian hepatitis E viruses from Australia and Europe indicate the existence of different genotypes
More LessAvian hepevirus infections were detected in chickens suffering from big liver and spleen disease or hepatitis–splenomegaly syndrome in Australia, the USA and Europe. Available data indicate their genetic relationship to mammalian hepatitis E virus (HEV). In the present study, the near-complete genomic sequences of an Australian and a European isolate of avian hepatitis E virus (avian HEV) are reported for the first time. Furthermore, the phylogenetic relationship to other avian HEVs is determined. Sequence analyses of these isolates identified major genetic differences among avian HEVs. Most of them are located within the open reading frame (ORF)1 region, although only a few lie within conserved motifs of predicted domains. Non-silent mutations in the ORF2 region suggest the presence of potentially different epitopes among avian HEV isolates. Finally, phylogenetic analysis confirmed the distant relationship to mammalian HEV and additionally suggested that the avian HEVs can be separated into three different genotypes: 1 (Australia), 2 (USA) and 3 (Europe), indicating a geographical distribution pattern.
-
-
-
Alpha interferon as an adenovirus-vectored vaccine adjuvant and antiviral in Venezuelan equine encephalitis virus infection
There are no widely available vaccines or antiviral drugs capable of protecting against infection with Venezuelan equine encephalitis virus (VEEV), although an adenovirus vector expressing VEEV structural proteins protects mice from challenge with VEEV and is potentially a vaccine suitable for human use. This work examines whether alpha interferon (IFN-α) could act as an adjuvant for the adenovirus-based vaccine. IFN-α was either expressed by a plasmid linked to the adenovirus vaccine or encoded by a separate adenovirus vector administered as a mixture with the vaccine. In contrast to previous reports with other vaccines, the presence of IFN-α reduced the antibody response to VEEV. When IFN-α was encoded by adenovirus, the lack of a VEEV-specific response was accompanied by an increase in the immune response to the adenovirus vector. IFN-α also plays a direct role in defence against virus infection, inducing the expression of a large number of antiviral proteins. Adenovirus-delivered IFN-α protected mice from VEEV disease when administered 24 h prior to challenge, but not when administered 6 h post-challenge, suggesting that up to 24 h is required for the development of the IFN-mediated antiviral response.
-
-
-
Detection of diverse astroviruses from bats in China
Astroviruses infect humans and many different animal species and are associated with gastroenteritis. Recent studies first detected the virus from bat species in Hong Kong. To understand astrovirus distribution in the wider region further, we examined the prevalence of this virus family in bat specimens collected from a large geographical region of mainland China. We collected 500 anal swabs from 20 bat species in 51 natural habitats from 11 provinces of China and tested these for astroviruses. Our study revealed a remarkably high genetic diversity of astroviruses; five monophyletic groups were identified in bats, including two novel groups. Evidence for varying degrees of host restriction for astroviruses from bats has been found. Phylogenetic analyses also provided insight into the inter-species transmission of Mamastrovirus.
-
-
-
Multiple-hit inhibition of infection by defective interfering particles
More LessDefective interfering particles (DIPs) are virus-like particles that arise during virus growth, fail to grow in the absence of virus, and replicate at the expense of virus during co-infections. The inhibitory effects of DIPs on virus growth are well established, but little is known about how DIPs influence their own growth. Here vesicular stomatitis virus (VSV) and its DIPs were used to co-infect BHK cells, and the effect of DIP dose on virus and DIP production was measured using a yield-reduction assay. The resulting dose–response data were used to fit and evaluate mathematical models that employed different assumptions. Our analysis supports a multiple-hit process where DIPs inhibit or promote virus and DIP production, depending on dose. Specifically, three regimes of co-infection were apparent: (i) low DIP – where both virus and DIPs are amplified, (ii) medium DIP – where amplification of both virus and DIPs is inhibited, and (iii) high DIP – with limited recovery of virus production and further inhibition of DIP growth. In addition, serial-passage infections enabled us to estimate the frequency of de novo DIP generation during virus amplification. Our combined experiments and models provide a means to understand better how DIPs quantitatively impact the growth of viruses and the spread of their infections.
-
-
-
High prevalence of amantadine resistance among circulating European porcine influenza A viruses
Genetic analysis of the M2 sequence of European porcine influenza A viruses reveals a high prevalence of amantadine resistance due to the substitution of serine 31 by asparagine in all three circulating subtypes, H1N1, H3N2 and H1N2. The M segment of all resistant strains belongs to a single genetic lineage. Whereas the first amantadine-resistant porcine strain was isolated in 1989, isolation of the last amantadine-susceptible strain dates to 1987, suggesting a displacement of amantadine-susceptible viruses by resistant strains soon after emergence of the mutation. Analysis of natural selection by codon-based tests indicates negative selection of codons 30, 31 and 34 which confer amantadine resistance. The codons 2, 11–28 and 54 of porcine and human strains exhibit differences in the patterns of substitution rates, suggesting different selection modes. Transfer of amantadine resistance by exchange of the M segment and viability of recombinant A/WSN/33 viruses with avian-like M segments raises concerns about the emergence of natural human reassortants.
-
-
-
Measles virus modulates chemokine release and chemotactic responses of dendritic cells
More LessInterference with dendritic cell (DC) maturation and function is considered to be central to measles virus (MV)-induced immunosuppression. Temporally ordered production of chemokines and switches in chemokine receptor expression are essential for pathogen-driven DC maturation as they are prerequisites for chemotaxis and T cell recruitment. We found that MV infection of immature monocyte-derived DCs induced transcripts specific for CCL-1, -2, -3, -5, -17 and -22, CXCL-10 and CXCL-11, yet did not induce CXCL-8 (interleukin-8) and CCL-20 at the mRNA and protein level. Within 24 h post-infection, T cell attraction was not detectably impaired by these cells. MV infection failed to promote the switch from CCR5 to CCR7 expression and this correlated with chemotactic responses of MV-matured DC cultures to CCL-3 rather than to CCL-19. Moreover, the chemotaxis of MV-infected DCs to either chemokine was compromised, indicating that MV also interferes with this property independently of chemokine receptor modulation.
-
-
-
Acute-phase CD4+ T-cell proliferation and CD152 upregulation predict set-point virus replication in vaccinated simian–human immunodeficiency virus strain 89.6p-infected macaques
Human immunodeficiency virus (HIV) infection in humans and simian immunodeficiency virus (SIV) infection in macaques are accompanied by a combined early loss of CCR5 (CD195)-expressing CD4+ memory T cells, loss of T-helper function and T-cell hyperactivation, which have all been associated with development of high virus load and disease progression. Here, a cohort of vaccinated simian–human immunodeficiency virus strain 89.6p (SHIV89.6p)-infected rhesus macaques, where preferential depletion of these memory T-cell subsets does not take place and CD4+ T cells are relatively well maintained, was used to study the role of hyperactivation as an independent factor in the establishment of set-point virus load. In the acute phase of the infection, a transient loss of CD4+ T cells, as well as strong increases in expression of proliferation and activation markers on CD4+ and CD8+ T cells, together with CD152 expression on CD4+ T cells, were observed. Peak expression levels of these markers on CD4+ T cells, but not on CD8+ T cells, were correlated with high virus replication in the chronic phase of the infection. In addition, the peak expression level of these markers was correlated inversely with acute-phase, but not chronic-phase, HIV/SIV-specific gamma interferon responses. These data highlight a central role for an acute but transient CD4 decrease, as well as CD4+ T-cell activation, as independent factors for prediction of set-point levels of virus replication.
-
-
-
DC-SIGN (CD209) gene promoter polymorphisms in a Brazilian population and their association with human T-cell lymphotropic virus type 1 infection
This study evaluated four polymorphisms located in the DC-SIGN (CD209) gene promoter region (positions −336, −332 −201 and −139) in DNA samples from four Brazilian ethnic groups (Caucasians, Afro-Brazilian, Asians and Amerindians) to establish the population distribution of these single-nucleotide polymorphisms (SNPs) and correlated DC-SIGN polymorphisms and infection in samples from human T-cell lymphotropic virus type 1 (HTLV-1)-infected individuals. To identify CD209 SNPs, 452 bp of the CD209 promoter region were sequenced and the genotype and allelic frequencies were evaluated. This is the first study to show genetic polymorphism in the CD209 gene in distinct Brazilian ethnic groups with the distribution of allelic and genotypic frequency. The results showed that −336A and −139A SNPs were quite common in Asians and that the −201T allele was not observed in Caucasians, Asians or Amerindians. No significant differences were observed between individuals with HTLV-1 disease and asymptomatic patients. However, the −336A variant was more frequent in HTLV-1-infected patients [HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), 80 %; healthy asymptomatic HTLV-1 carriers, 90 %] than in the control group (70 %) [P=0.0197, odds ratio (OR)=2.511, 95 % confidence interval (CI)=1.218–5.179). In addition, the −139A allele was found to be associated with protection against HTLV-1 infection (P=0.0037, OR=0.3758, 95 % CI=0.1954–0.7229) when the HTLV-1-infected patients as a whole were compared with the healthy-control group. These observations suggest that the −139A allele may be associated with HTLV-1 infection, although no significant association was observed among asymptomatic and HAM/TSP patients. In conclusion, the variation observed in SNPs −336 and −139 indicates that this lectin may be of crucial importance in the susceptibility/transmission of HTLV-1 infections.
-
-
-
Diversity of the G3 genes of human rotaviruses in isolates from Spain from 2004 to 2006: cross-species transmission and inter-genotype recombination generates alleles
Rotavirus evolves by using multiple genetic mechanisms which are an accumulation of spontaneous point mutations and reassortment events. Other mechanisms, such as cross-species transmission and inter-genotype recombination, may be also involved. One of the most interesting genotypes in the accumulation of these events is the G3 genotype. In this work, six new Spanish G3 sequences belonging to 0–2-year-old patients from Madrid were analysed and compared with 160 others of the same genotype obtained from humans and other host species to establish the evolutionary pathways of the G3 genotype. The following results were obtained: (i) there are four different lineages of the G3 genotype which have evolved in different species; (ii) Spanish G3 rotavirus sequences are most similar to the described sequences that belong to lineage I; (iii) several G3 genotype alleles were reassigned as other G genotypes; and (iv) inter-genotype recombination events in G3 viruses involving G1 and G2 were described. These findings strongly suggest multiple inter-species transmission events between different non-human mammalian species and humans.
-
- DNA viruses
-
-
Identification and characterization of a new Kaposi's sarcoma-associated herpesvirus replication and transcription activator (RTA)-responsive element involved in RTA-mediated transactivation
More LessKaposi's sarcoma-associated herpesvirus (KSHV) replication and transcription activator (RTA) is well established as a key transcriptional activator that regulates the KSHV life cycle from latency to lytic replication. It is expressed immediately after infection and activates a number of viral genes leading to virus replication. The RTA-responsive element (RRE) in the RTA target gene promoters is critical for RTA to mediate this transactivation. A number of non-conserved RREs have been identified in various RTA-responsive promoters, and AT-rich sequences have been proposed to serve as RTA targets, but no consensus RRE sequence has been identified so far. Two non-conserved RREs (RRE1 and RRE2) containing AT-rich sequences have been identified previously in the promoter of one of the KSHV lytic genes, ORF57, which can be strongly activated by RTA. Based on homology with the consensus sequence of the Epstein–Barr virus Rta RRE, this study identified a third RTA-responsive element (RRE3) in the ORF57 promoter. This RRE comprised a GC-rich sequence that could bind RTA both in vitro and in vivo, and plays a role in RTA-mediated transactivation of the ORF57 promoter. The presence of two of the three RREs in close proximity to each other was required for optimal RTA-mediated transactivation of the ORF57 promoter, even though the presence of only one RRE is needed for RTA binding. These results suggest that the ability of RTA to mediate transcriptional activation is distinct from its ability to bind to its target elements.
-
-
-
Human cytomegalovirus infection downregulates the expression of glial fibrillary acidic protein in human glioblastoma U373MG cells: identification of viral genes and protein domains involved
More LessHuman cytomegalovirus (HCMV) has tropism for glial cells, among many other cell types. It was reported previously that the stable expression of HCMV immediate-early protein 1 (IE1) could dramatically reduce the RNA level of glial fibrillary acidic protein (GFAP), an astroglial cell-specific intermediate filament protein, which is progressively lost with an increase in glioma malignancy. To understand this phenomenon in the context of virus infection, a human glioblastoma cell line, U373MG, was infected with HCMV (strain AD169 or Towne). The RNA level of GFAP was reduced by more than 10-fold at an m.o.i. of 3 at 48 h post-infection, whilst virus treated with neutralizing antibody C23 or with UV light had a much-reduced effect. Treatment of infected cells with ganciclovir did not prevent HCMV-mediated downregulation of GFAP. Although the expression of GFAP RNA is downregulated in IE1-expressing cells, a mutant HCMV strain lacking IE1 still suppressed GFAP, indicating that other IE proteins may be involved. IE2 is also proposed to be involved in GFAP downregulation, as an adenoviral vector expressing IE2 could also reduce the RNA level of GFAP. Data from the mutational analysis indicated that HCMV infection might affect the expression of this structural protein significantly, primarily through the C-terminal acidic region of the IE1 protein.
-
-
-
Lineages of varicella-zoster virus
More LessRelationships among varicella-zoster virus (VZV; Human herpesvirus 3) genome sequences were examined to evaluate descent of strains, structures of lineages and incidence of recombination events. Eighteen complete, published genome sequences were aligned and 494 single nucleotide polymorphisms (SNPs) extracted, each as two alleles. At 281 SNPs, a single sequence differed from all the others. Distributions of the remaining 213 SNPs indicated that the sequences fell into five groups, which coincided with previously recognized phylogenetic groupings, termed E1, E2, J, M1 and M2. The 213-SNP set was divisible into 104 SNPs that were specific to a single group, and 109 cross-group SNPs that defined relationships among groups. This last set was evaluated by criteria of continuities in relationships between groups and breaks in such patterns, to identify crossover points and ascribe them to lineages. For the 99 cross-group SNPs in the genome's long unique region, it was seen that the E2 and M2 groups were almost completely distinct in their SNP alleles, and the E1 group was derived from a recombinant of E2 and M2. A valid phylogenetic tree could thus be constructed for the four E2 and two M2 strains. There was no substantive evidence for recombination within the E2 group or the E1 group (ten strains). The J and M1 groups each contained only one strain, and both were interpreted as having substantial distinct histories plus possible recombinant elements from the E2 and M2 lineages. The view of VZV recombination and phylogeny reached represents a major clarification of deep relationships among VZV lineages.
-
-
-
Conservation and variation of the parapoxvirus GM-CSF-inhibitory factor (GIF) proteins
The GIF protein of orf virus (ORFV) binds and inhibits the ovine cytokines granulocyte–macrophage colony-stimulating factor (GM-CSF) and interleukin-2 (IL-2). An equivalent protein has so far not been found in any of the other poxvirus genera and we therefore investigated whether it was conserved in the parapoxviruses. The corresponding genes from both the bovine-specific pseudocowpox virus (PCPV) and bovine papular stomatitis virus (BPSV) were cloned and sequenced. The predicted amino acid sequences of the PCPV and BPSV proteins shared 88 and 37 % identity, respectively, with the ORFV protein. Both retained the six cysteine residues and the WSXWS-like motif that are required for biological activity of the ORFV protein. However, an analysis of the biological activity of the two recombinant proteins revealed that, whilst the PCPV GIF protein bound to both ovine and bovine GM-CSF and IL-2 with very similar binding affinities to the ORFV GIF protein, no GM-CSF- or IL-2-binding activity was found for the BPSV protein.
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month
