1887

Abstract

The recently described hepatic cell line HepaRG is the sole hepatoma cell line susceptible to hepatitis B virus (HBV) infection. It provides a unique tool for investigating some unresolved issues of the virus' biology, particularly the formation of the viral mini-chromosome believed to be responsible for the persistence of infection. In this study, we characterized the main features of HBV infection: it is restricted to a subpopulation of differentiated hepatocyte-like cells that express albumin as a functional marker and represents around 10 % of all differentiated HepaRG cells. Infection may persist for more than 100 days in cells maintained at the differentiated state. Even though infected cells continued to produce infectious viral particles, very limited or no spreading of infection was observed. Low genetic variation was also observed in the viral DNA from viruses found in the supernatant of infected cells, although this cannot explain the lack of reinfection. HBV infection of HepaRG cells appears to be a very slow process: viral replication starts at around day 8 post-infection and reaches a maximum at day 13. Analysis of viral DNA showed slow and inefficient conversion of the input relaxed circular DNA into covalently closed circular (CCC) DNA, but no further amplification. Continuous lamivudine treatment inhibited viral replication, but neither prevented viral infection nor initial formation of CCC DNA. In conclusion, HBV infection in differentiated HepaRG cells is characterized by long-term persistence without a key feature of hepadnaviruses, the so-called ‘CCC DNA amplification’ described in the duck hepatitis B model.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.004861-0
2009-01-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/1/127.html?itemId=/content/journal/jgv/10.1099/vir.0.004861-0&mimeType=html&fmt=ahah

References

  1. Abou-Jaoude, G. & Sureau, C. ( 2007; ). Entry of hepatitis delta virus requires the conserved cysteine residues of the hepatitis B virus envelope protein antigenic loop and is blocked by inhibitors of thiol-disulfide exchange. J Virol 81, 13057–13066.[CrossRef]
    [Google Scholar]
  2. Aninat, C., Piton, A., Glaise, D., Le Charpentier, T., Langouet, S., Morel, F., Guguen-Guillouzo, C. & Guillouzo, A. ( 2006; ). Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug Metab Dispos 34, 75–83.
    [Google Scholar]
  3. Beckel-Mitchener, A. & Summers, J. ( 1997; ). A novel transcriptional element in circular DNA monomers of the duck hepatitis B virus. J Virol 71, 7917–7922.
    [Google Scholar]
  4. Blanchet, M. & Sureau, C. ( 2006; ). Analysis of the cytosolic domains of the hepatitis B virus envelope proteins for their function in viral particle assembly and infectivity. J Virol 80, 11935–11945.[CrossRef]
    [Google Scholar]
  5. Borel, C., Schorr, O., Durand, I., Zoulim, F., Kay, A., Trepo, C. & Hantz, O. ( 2001; ). Initial amplification of duck hepatitis B virus covalently closed circular DNA after in vitro infection of embryonic duck hepatocytes is increased by cell cycle progression. Hepatology 34, 168–179.[CrossRef]
    [Google Scholar]
  6. Bouchard, M. J. & Schneider, R. J. ( 2004; ). The enigmatic X gene of hepatitis B virus. J Virol 78, 12725–12734.[CrossRef]
    [Google Scholar]
  7. Chemin, I., Baginski, I., Petit, M. A., Zoulim, F., Pichoud, C., Capel, F., Hantz, O. & Trepo, C. ( 1991; ). Correlation between HBV DNA detection by polymerase chain reaction and pre-S1 antigenemia in symptomatic and asymptomatic hepatitis B virus infections. J Med Virol 33, 51–57.[CrossRef]
    [Google Scholar]
  8. Delmas, J., Schorr, O., Jamard, C., Gibbs, C., Trepo, C., Hantz, O. & Zoulim, F. ( 2002; ). Inhibitory effect of adefovir on viral DNA synthesis and covalently closed circular DNA formation in duck hepatitis B virus-infected hepatocytes in vivo and in vitro. Antimicrob Agents Chemother 46, 425–433.[CrossRef]
    [Google Scholar]
  9. Durantel, D., Carrouee-Durantel, S., Werle-Lapostolle, B., Brunelle, M. N., Pichoud, C., Trepo, C. & Zoulim, F. ( 2004; ). A new strategy for studying in vitro the drug susceptibility of clinical isolates of human hepatitis B virus. Hepatology 40, 855–864.[CrossRef]
    [Google Scholar]
  10. Engelke, M., Mills, K., Seitz, S., Simon, P., Gripon, P., Schnolzer, M. & Urban, S. ( 2006; ). Characterization of a hepatitis B and hepatitis delta virus receptor binding site. Hepatology 43, 750–760.[CrossRef]
    [Google Scholar]
  11. Galle, P. R., Schlicht, H. J., Kuhn, C. & Schaller, H. ( 1989; ). Replication of duck hepatitis B virus in primary duck hepatocytes and its dependence on the state of differentiation of the host cell. Hepatology 10, 459–465.[CrossRef]
    [Google Scholar]
  12. Galle, P. R., Hagelstein, J., Kommerell, B., Volkmann, M., Schranz, P. & Zentgraf, H. ( 1994; ). In vitro experimental infection of primary human hepatocytes with hepatitis B virus. Gastroenterology 106, 664–673.
    [Google Scholar]
  13. Gao, W. & Hu, J. ( 2007; ). Formation of hepatitis B virus covalently closed circular DNA: removal of genome-linked protein. J Virol 81, 6164–6174.[CrossRef]
    [Google Scholar]
  14. Gripon, P., Diot, C., Theze, N., Fourel, I., Loreal, O., Brechot, C. & Guguen-Guillouzo, C. ( 1988a; ). Hepatitis B virus infection of adult human hepatocytes cultured in the presence of dimethyl sulfoxide. J Virol 62, 4136–4143.
    [Google Scholar]
  15. Gripon, P., Diot, C., Thézé, N., Fourel, I., Loreal, O., Bréchot, C. & Guguen-Guillouzo, C. ( 1988b; ). Hepatitis B virus infection of adult human hepatocytes cultured in the presence of dimethyl sulfoxide. J Virol 62, 4136–4143.
    [Google Scholar]
  16. Gripon, P., Diot, C. & Guguen-Guillouzo, C. ( 1993; ). Reproducible high level infection of cultured adult human hepatocytes by hepatitis virus: effect of polyethylen glycol on adsorption and penetration. Virology 192, 534–540.[CrossRef]
    [Google Scholar]
  17. Gripon, P., Rumin, S., Urban, S., Le Seyec, J., Glaise, D., Cannie, I., Guyomard, C., Lucas, J., Trepo, C. & Guguen-Guillouzo, C. ( 2002; ). Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U S A 99, 15655–15660.[CrossRef]
    [Google Scholar]
  18. Guillouzo, A., Corlu, A., Aninat, C., Glaise, D., Morel, F. & Guguen-Guillouzo, C. ( 2007; ). The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem Biol Interact 168, 66–73.[CrossRef]
    [Google Scholar]
  19. Guo, H., Jiang, D., Zhou, T., Cuconati, A., Block, T. M. & Guo, J. T. ( 2007; ). Characterization of the intracellular deproteinized relaxed circular DNA of hepatitis B virus: an intermediate of covalently closed circular DNA formation. J Virol 81, 12472–12484.[CrossRef]
    [Google Scholar]
  20. Hannoun, C., Horal, P. & Lindh, M. ( 2000; ). Long-term mutation rates in the hepatitis B virus genome. J Gen Virol 81, 75–83.
    [Google Scholar]
  21. Köck, J., Nassal, M., MacNelly, S., Baumert, T. F., Blum, H. E. & von Weizsacker, F. ( 2001; ). Efficient infection of primary tupaia hepatocytes with purified human and woolly monkey hepatitis B virus. J Virol 75, 5084–5089.[CrossRef]
    [Google Scholar]
  22. Köck, J., Baumert, T. F., Delaney, W. E., IV, Blum, H. E. & von Weizsacker, F. ( 2003; ). Inhibitory effect of adefovir and lamivudine on the initiation of hepatitis B virus infection in primary tupaia hepatocytes. Hepatology 38, 1410–1418.
    [Google Scholar]
  23. Lambert, V., Fernholz, D., Sprengel, R., Fourel, I., Deleage, G., Wildner, G., Peyret, C., Trepo, C., Cova, L. & Will, H. ( 1990; ). Virus-neutralizing monoclonal antibody to a conserved epitope on the duck hepatitis B virus pre-S protein. J Virol 64, 1290–1297.
    [Google Scholar]
  24. Lee, K. D., Kuo, T. K., Whang-Peng, J., Chung, Y. F., Lin, C. T., Chou, S. H., Chen, J. R., Chen, Y. P. & Lee, O. K. ( 2004; ). In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40, 1275–1284.[CrossRef]
    [Google Scholar]
  25. Mason, W. S., Seal, G. & Summers, J. ( 1980; ). Virus of Pekin ducks with structural and biological relatedness to human hepatitis B virus. J Virol 36, 829–836.
    [Google Scholar]
  26. Mizuguchi, T., Mitaka, T., Hirata, K., Oda, H. & Mochizuki, Y. ( 1998; ). Alteration of expression of liver-enriched transcription factors in the transition between growth and differentiation of primary cultured rat hepatocytes. J Cell Physiol 174, 273–284.[CrossRef]
    [Google Scholar]
  27. Osiowy, C., Giles, E., Tanaka, Y., Mizokami, M. & Minuk, G. Y. ( 2006; ). Molecular evolution of hepatitis B virus over 25 years. J Virol 80, 10307–10314.[CrossRef]
    [Google Scholar]
  28. Parent, R. & Beretta, L. ( 2008; ). Translational control plays a prominent role in the hepatocytic differentiation of HepaRG liver progenitor cells. Genome Biol 9, R19 [CrossRef]
    [Google Scholar]
  29. Pugh, J. C. & Summers, J. W. ( 1989; ). Infection and uptake of duck hepatitis B virus by duck hepatocytes maintained in the presence of dimethyl sulfoxide. Virology 172, 564–572.[CrossRef]
    [Google Scholar]
  30. Rumin, S., Gripon, P., Le Seyec, J., Corral-Debrinski, M. & Guguen-Guillouzo, C. ( 1996; ). Long-term productive episomal hepatitis B virus replication in primary cultures of adult human hepatocytes infected in vitro. J Viral Hepat 3, 227–238.[CrossRef]
    [Google Scholar]
  31. Schorr, O., Borel, C., Trepo, C., Zoulim, F. & Hantz, O. ( 2006; ). Effects of liver growth factors on hepadnavirus replication in chronically infected duck hepatocytes. J Hepatol 44, 842–847.[CrossRef]
    [Google Scholar]
  32. Schulze, A., Gripon, P. & Urban, S. ( 2007; ). Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology 46, 1759–1768.[CrossRef]
    [Google Scholar]
  33. Seeger, C. & Mason, W. S. ( 2000; ). Hepatitis B virus biology. Microbiol Mol Biol Rev 64, 51–68.[CrossRef]
    [Google Scholar]
  34. Sells, M. A., Chen, M. & Acs, G. ( 1987; ). Production of hepatitis B virus particles in hepG2 cells transfected with cloned hepatitis B virus DNA. Proc Natl Acad Sci U S A 84, 1005–1009.[CrossRef]
    [Google Scholar]
  35. Summers, J., Smith, P. M. & Horwich, A. L. ( 1990; ). Hepadnavirus envelope proteins regulate covalently closed circular DNA amplification. J Virol 64, 2819–2824.
    [Google Scholar]
  36. Talarmin, H., Rescan, C., Cariou, S., Glaise, D., Zanninelli, G., Bilodeau, M., Loyer, P., Guguen-Guillouzo, C. & Baffet, G. ( 1999; ). The mitogen-activated protein kinase kinase extracellular signal-regulated kinase cascade activation is a key signalling pathway involved in the regulation of G1 phase progression in proliferating hepatocytes. Mol Cell Biol 19, 6003–6011.
    [Google Scholar]
  37. Tang, H. & McLachlan, A. ( 2001; ). Transcriptional regulation of hepatitis B virus by nuclear hormone receptors is a critical determinant of viral tropism. Proc Natl Acad Sci U S A 98, 1841–1846.[CrossRef]
    [Google Scholar]
  38. Tang, H. & McLachlan, A. ( 2002; ). Avian and mammalian hepadnaviruses have distinct transcription factor requirements for viral replication. J Virol 76, 7468–7472.[CrossRef]
    [Google Scholar]
  39. Tang, H., Banks, K. E., Anderson, A. L. & McLachlan, A. ( 2001; ). Hepatitis B virus transcription and replication. Drug News Perspect 14, 325–334.
    [Google Scholar]
  40. Turin, F., Borel, C., Benchaib, M., Kay, T., Jamard, C., Guguen-Guillouzo, C., Trepo, C. & Hantz, O. ( 1996; ). n-Butyrate, a cell cycle blocker, inhibits early amplification of duck hepatitis B virus covalently closed circular DNA after in vitro infection of duck hepatocytes. J Virol 70, 2691–2696.
    [Google Scholar]
  41. Tuttleman, J. S., Pourcel, C. & Summers, J. W. ( 1986a; ). Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell 47, 451–460.[CrossRef]
    [Google Scholar]
  42. Tuttleman, J. S., Pugh, J. C. & Summers, J. W. ( 1986b; ). In vitro experimental infection of primary duck hepatocyte cultures with duck hepatitis B virus. J Virol 58, 17–25.
    [Google Scholar]
  43. Werle-Lapostolle, B., Bowden, S., Locarnini, S., Wursthorn, K., Petersen, J., Lau, G., Trepo, C., Marcellin, P., Goodman, Z., Delaney, W. E., IV, Xiong, S., Brosgart, C. L., Chen, S. S., Gibbs, C. S. & Zoulim, F. ( 2004; ). Persistence of cccDNA during the natural history of chronic hepatitis B and decline during adefovir dipivoxil therapy. Gastroenterology 126, 1750–1758.[CrossRef]
    [Google Scholar]
  44. Zoulim, F., Saputelli, J. & Seeger, C. ( 1994; ). Woodchuck hepatitis virus X protein is required for viral infection in vivo. J Virol 68, 2026–2030.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.004861-0
Loading
/content/journal/jgv/10.1099/vir.0.004861-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error