1887

Abstract

The immunological effect of porcine reproductive and respiratory syndrome disease virus (PRRSV) vaccines is thought to be influenced by a variety of host factors, in which antibody-dependent enhancement (ADE) of infection is one crucial factor. Here, we assessed the mechanism of ADE of PRRSV infection. First, we found that subneutralizing serum could induce ADE of PRRSV infection in porcine alveolar macrophages (PAMs). Quantitative PCR, Western blotting and flow cytometry revealed that CD16 is the most abundant Fcγ receptor (FcγR) expressed on the surface of PAMs; thus, the role of CD16 in ADE of PRRSV infection was examined in PAMs. By using functional blocking antibodies, we demonstrated that CD16 is involved in enhanced virus production in PRRSV–antibody immune complex-infected PAMs. Because PAMs co-express different FcγR isoforms, we evaluated the effects of CD16 in FcγR-non-bearing cells by transfection. Using these engineered cells, we found that CD16 could specifically bind to the PRRSV–antibody immune complex and subsequently mediate internalization of the virus, resulting in the generation of progeny virus. We also showed that efficient expression of CD16 required association of the FcR γ-chain. Together, our findings provide significant new insights into PRRSV infection, which can be enhanced by CD16-mediated PRRSV–antibody immune complexes. This CD16-mediated ADE may induce a shift in PRRSV tropism towards CD16-expressing cells, distributing virus to more organs during virus infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000118
2015-07-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/7/1712.html?itemId=/content/journal/jgv/10.1099/vir.0.000118&mimeType=html&fmt=ahah

References

  1. Balsitis S. J., Williams K. L., Lachica R., Flores D., Kyle J. L., Mehlhop E., Johnson S., Diamond M. S., Beatty P. R., Harris E.. ( 2010; ). Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification. . PLoS Pathog 6:, e1000790. [CrossRef] [PubMed]
    [Google Scholar]
  2. Boonnak K., Slike B. M., Donofrio G. C., Marovich M. A.. ( 2013; ). Human FcγRII cytoplasmic domains differentially influence antibody-mediated dengue virus infection. . J Immunol 190:, 5659–5665. [CrossRef] [PubMed]
    [Google Scholar]
  3. Calvert J. G., Slade D. E., Shields S. L., Jolie R., Mannan R. M., Ankenbauer R. G., Welch S. K.. ( 2007; ). CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses. . J Virol 81:, 7371–7379. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cavanagh D.. ( 1997; ). Nidovirales: a new order comprising Coronaviridae and Arteriviridae. . Arch Virol 142:, 629–633.[PubMed]
    [Google Scholar]
  5. Chotiwan N., Roehrig J. T., Schlesinger J. J., Blair C. D., Huang C. Y.. ( 2014; ). Molecular determinants of dengue virus 2 envelope protein important for virus entry in FcγRIIA-mediated antibody-dependent enhancement of infection. . Virology 456-457:, 238–246. [CrossRef] [PubMed]
    [Google Scholar]
  6. Christianson W. T., Choi C. S., Collins J. E., Molitor T. W., Morrison R. B., Joo H. S.. ( 1993; ). Pathogenesis of porcine reproductive and respiratory syndrome virus infection in mid-gestation sows and fetuses. . Can J Vet Res 57:, 262–268.[PubMed]
    [Google Scholar]
  7. Christopher-Hennings J., Nelson E. A., Nelson J. K., Benfield D. A.. ( 1997; ). Effects of a modified-live virus vaccine against porcine reproductive and respiratory syndrome in boars. . Am J Vet Res 58:, 40–45.[PubMed]
    [Google Scholar]
  8. Davis W., Harrison P. T., Hutchinson M. J., Allen J. M.. ( 1995; ). Two distinct regions of FCγRI initiate separate signalling pathways involved in endocytosis and phagocytosis. . EMBO J 14:, 432–441.[PubMed]
    [Google Scholar]
  9. Dee S. A., Joo H.. ( 1997; ). Strategies to control PRRS: a summary of field and research experiences. . Vet Microbiol 55:, 347–353. [CrossRef] [PubMed]
    [Google Scholar]
  10. Fridman W. H.. ( 1991; ). Fc receptors and immunoglobulin binding factors. . FASEB J 5:, 2684–2690.[PubMed]
    [Google Scholar]
  11. Goncalvez A. P., Engle R. E., St Claire M., Purcell R. H., Lai C.-J.. ( 2007; ). Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention. . Proc Natl Acad Sci U S A 104:, 9422–9427. [CrossRef] [PubMed]
    [Google Scholar]
  12. Guilliams M., Bruhns P., Saeys Y., Hammad H., Lambrecht B. N.. ( 2014; ). The function of Fcγ receptors in dendritic cells and macrophages. . Nat Rev Immunol 14:, 94–108. [CrossRef] [PubMed]
    [Google Scholar]
  13. Guo L., Niu J., Yu H., Gu W., Li R., Luo X., Huang M., Tian Z., Feng L., Wang Y.. ( 2014; ). Modulation of CD163 expression by metalloprotease ADAM17 regulates porcine reproductive and respiratory syndrome virus entry. . J Virol 88:, 10448–10458. [CrossRef] [PubMed]
    [Google Scholar]
  14. Halloran P. J., Sweeney S. E., Kim Y. B.. ( 1994; a). Biochemical characterization of the porcine FcγRIIIα homologue G7. . Cell Immunol 158:, 400–413. [CrossRef] [PubMed]
    [Google Scholar]
  15. Halloran P. J., Sweeney S. E., Strohmeier C. M., Kim Y. B.. ( 1994; b). Molecular cloning and identification of the porcine cytolytic trigger molecule G7 as a FcγRIIIα (CD16) homologue. . J Immunol 153:, 2631–2641.[PubMed]
    [Google Scholar]
  16. Halstead S. B., O’Rourke E. J.. ( 1977; ). Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. . J Exp Med 146:, 201–217. [CrossRef] [PubMed]
    [Google Scholar]
  17. Haubrich R. H., Takeda A., Koff W., Smith G., Ennis F. A.. ( 1992; ). Studies of antibody-dependent enhancement of human immunodeficiency virus (HIV) type 1 infection mediated by Fc receptors using sera from recipients of a recombinant gp160 experimental HIV-1 vaccine. . J Infect Dis 165:, 545–548. [CrossRef] [PubMed]
    [Google Scholar]
  18. He J., Lai H., Engle M., Gorlatov S., Gruber C., Steinkellner H., Diamond M. S., Chen Q.. ( 2014; ). Generation and analysis of novel plant-derived antibody-based therapeutic molecules against West Nile virus. . PLoS ONE 9:, e93541. [CrossRef] [PubMed]
    [Google Scholar]
  19. Hober D., Sane F., Jaïdane H., Riedweg K., Goffard A., Desailloud R.. ( 2012; ). Immunology in the clinic review series; focus on type 1 diabetes and viruses: role of antibodies enhancing the infection with Coxsackievirus-B in the pathogenesis of type 1 diabetes. . Clin Exp Immunol 168:, 47–51. [CrossRef] [PubMed]
    [Google Scholar]
  20. Huisman W., Martina B. E., Rimmelzwaan G. F., Gruters R. A., Osterhaus A. D.. ( 2009; ). Vaccine-induced enhancement of viral infections. . Vaccine 27:, 505–512. [CrossRef] [PubMed]
    [Google Scholar]
  21. Indik Z. K., Park J. G., Hunter S., Schreiber A. D.. ( 1995; ). The molecular dissection of Fc gamma receptor mediated phagocytosis. . Blood 86:, 4389–4399.[PubMed]
    [Google Scholar]
  22. Jie H. B., Yim D., Kim Y. B.. ( 2009; ). Porcine FcγRIII isoforms are generated by alternative splicing. . Mol Immunol 46:, 1189–1194. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kacskovics I.. ( 2004; ). Fc receptors in livestock species. . Vet Immunol Immunopathol 102:, 351–362. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kam Y. W., Kien F., Roberts A., Cheung Y. C., Lamirande E. W., Vogel L., Chu S. L., Tse J., Guarner J. et al. ( 2007; ). Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcγRII-dependent entry into B cells in vitro. . Vaccine 25:, 729–740. [CrossRef] [PubMed]
    [Google Scholar]
  25. Kontny U., Kurane I., Ennis F. A.. ( 1988; ). Gamma interferon augments Fcγ receptor-mediated dengue virus infection of human monocytic cells. . J Virol 62:, 3928–3933.[PubMed]
    [Google Scholar]
  26. Laurence J., Saunders A., Early E., Salmon J. E.. ( 1990; ). Human immunodeficiency virus infection of monocytes: relationship to Fc-gamma receptors and antibody-dependent viral enhancement. . Immunology 70:, 338–343.[PubMed]
    [Google Scholar]
  27. Lidbury B. A., Mahalingam S.. ( 2000; ). Specific ablation of antiviral gene expression in macrophages by antibody-dependent enhancement of Ross River virus infection. . J Virol 74:, 8376–8381. [CrossRef] [PubMed]
    [Google Scholar]
  28. Littaua R., Kurane I., Ennis F. A.. ( 1990; ). Human IgG Fc receptor II mediates antibody-dependent enhancement of dengue virus infection. . J Immunol 144:, 3183–3186.[PubMed]
    [Google Scholar]
  29. Livak K. J., Schmittgen T. D.. ( 2001; ). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ C T method. . Methods 25:, 402–408. [CrossRef] [PubMed]
    [Google Scholar]
  30. Mady B. J., Kurane I., Erbe D. V., Fanger M. W., Ennis F. A.. ( 1993; ). Neuraminidase augments Fcγ receptor II-mediated antibody-dependent enhancement of dengue virus infection. . J Gen Virol 74:, 839–844. [CrossRef] [PubMed]
    [Google Scholar]
  31. Manokaran G., Lin Y.-N., Soh M.-L., Lim E. A.-S., Lim C.-W., Tan B.-H.. ( 2008; ). Detection of porcine circovirus type 2 in pigs imported from Indonesia. . Vet Microbiol 132:, 165–170. [CrossRef] [PubMed]
    [Google Scholar]
  32. Mason P. W., Baxt B., Brown F., Harber J., Murdin A., Wimmer E.. ( 1993; ). Antibody-complexed foot-and-mouth disease virus, but not poliovirus, can infect normally insusceptible cells via the Fc receptor. . Virology 192:, 568–577. [CrossRef] [PubMed]
    [Google Scholar]
  33. Meulenberg J. J., Hulst M. M., de Meijer E. J., Moonen P. L., den Besten A., de Kluyver E. P., Wensvoort G., Moormann R. J.. ( 1993; ). Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. . Virology 192:, 62–72. [CrossRef] [PubMed]
    [Google Scholar]
  34. Morens D. M., Halstead S. B.. ( 1990; ). Measurement of antibody-dependent infection enhancement of four dengue virus serotypes by monoclonal and polyclonal antibodies. . J Gen Virol 71:, 2909–2914. [CrossRef] [PubMed]
    [Google Scholar]
  35. Nelsen C. J., Murtaugh M. P., Faaberg K. S.. ( 1999; ). Porcine reproductive and respiratory syndrome virus comparison: divergent evolution on two continents. . J Virol 73:, 270–280.[PubMed]
    [Google Scholar]
  36. Nimmerjahn F., Ravetch J. V.. ( 2008; ). Fcγ receptors as regulators of immune responses. . Nat Rev Immunol 8:, 34–47. [CrossRef] [PubMed]
    [Google Scholar]
  37. Plana-Durán J., Bastons M., Urniza A., Vayreda M., Vilà X., Mañé H.. ( 1997; ). Efficacy of an inactivated vaccine for prevention of reproductive failure induced by porcine reproductive and respiratory syndrome virus. . Vet Microbiol 55:, 361–370. [CrossRef] [PubMed]
    [Google Scholar]
  38. Porter D. D., Larsen A. E., Porter H. G.. ( 1972; ). The pathogenesis of Aleutian disease of mink. II. Enhancement of tissue lesions following the administration of a killed virus vaccine or passive antibody. . J Immunol 109:, 1–7.[PubMed]
    [Google Scholar]
  39. Qiao S., Zhang G., Xia C., Zhang H., Zhang Y., Xi J., Song H., Li X.. ( 2006; ). Cloning and characterization of porcine Fc gamma receptor II (FcγRII). . Vet Immunol Immunopathol 114:, 178–184. [CrossRef] [PubMed]
    [Google Scholar]
  40. Qiao S., Jiang Z., Tian X., Wang R., Xing G., Wan B., Bao D., Liu Y., Hao H. et al. ( 2011; ). Porcine FcγRIIb mediates enhancement of porcine reproductive and respiratory syndrome virus (PRRSV) infection. . PLoS ONE 6:, e28721. [CrossRef] [PubMed]
    [Google Scholar]
  41. Raghavan M., Bjorkman P. J.. ( 1996; ). Fc receptors and their interactions with immunoglobulins. . Annu Rev Cell Dev Biol 12:, 181–220. [CrossRef] [PubMed]
    [Google Scholar]
  42. Ravetch J. V., Kinet J. P.. ( 1991; ). Fc receptors. . Annu Rev Immunol 9:, 457–492. [CrossRef] [PubMed]
    [Google Scholar]
  43. Sun P., Bauza K., Pal S., Liang Z., Wu S. J., Beckett C., Burgess T., Porter K.. ( 2011; ). Infection and activation of human peripheral blood monocytes by dengue viruses through the mechanism of antibody-dependent enhancement. . Virology 421:, 245–252. [CrossRef] [PubMed]
    [Google Scholar]
  44. Sweeney S. E., Kim Y. B.. ( 2004; ). Identification of a novel FcγRIIIaα-associated molecule that contains significant homology to porcine cathelin. . J Immunol 172:, 1203–1212. [CrossRef] [PubMed]
    [Google Scholar]
  45. Sweeney S. E., Halloran P. J., Kim Y. B.. ( 1996; ). Identification of a unique porcine Fc gamma RIIIA alpha molecular complex. . Cell Immunol 172:, 92–99. [CrossRef] [PubMed]
    [Google Scholar]
  46. Tian Z. J., An T. Q., Zhou Y. J., Peng J. M., Hu S. P., Wei T. C., Jiang Y. F., Xiao Y., Tong G. Z.. ( 2009; ). An attenuated live vaccine based on highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) protects piglets against HP-PRRS. . Vet Microbiol 138:, 34–40. [CrossRef] [PubMed]
    [Google Scholar]
  47. Tirado S. M., Yoon K. J.. ( 2003; ). Antibody-dependent enhancement of virus infection and disease. . Viral Immunol 16:, 69–86. [CrossRef] [PubMed]
    [Google Scholar]
  48. Tong G. Z., Zhou Y. J., Hao X. F., Tian Z. J., An T. Q., Qiu H. J.. ( 2007; ). Highly pathogenic porcine reproductive and respiratory syndrome, China. . Emerg Infect Dis 13:, 1434–1436. [CrossRef] [PubMed]
    [Google Scholar]
  49. Tóth F. D., Mosborg-Petersen P., Kiss J., Aboagye-Mathiesen G., Zdravkovic M., Hager H., Aranyosi J., Lampé L., Ebbesen P.. ( 1994; ). Antibody-dependent enhancement of HIV-1 infection in human term syncytiotrophoblast cells cultured in vitro. . Clin Exp Immunol 96:, 389–394. [CrossRef] [PubMed]
    [Google Scholar]
  50. Trischmann H., Davis D., Lachmann P. J.. ( 1995; ). Lymphocytotropic strains of HIV type 1 when complexed with enhancing antibodies can infect macrophages via FcγRIII, independently of CD4. . AIDS Res Hum Retroviruses 11:, 343–352. [CrossRef] [PubMed]
    [Google Scholar]
  51. Van Gorp H., Van Breedam W., Delputte P. L., Nauwynck H. J.. ( 2008; ). Sialoadhesin and CD163 join forces during entry of the porcine reproductive and respiratory syndrome virus. . J Gen Virol 89:, 2943–2953. [CrossRef] [PubMed]
    [Google Scholar]
  52. Vanderheijden N., Delputte P. L., Favoreel H. W., Vandekerckhove J., Van Damme J., van Woensel P. A., Nauwynck H. J.. ( 2003; ). Involvement of sialoadhesin in entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages. . J Virol 77:, 8207–8215. [CrossRef] [PubMed]
    [Google Scholar]
  53. Wang Y., Liang Y., Han J., Burkhart K. M., Vaughn E. M., Roof M. B., Faaberg K. S.. ( 2008; ). Attenuation of porcine reproductive and respiratory syndrome virus strain MN184 using chimeric construction with vaccine sequence. . Virology 371:, 418–429. [CrossRef] [PubMed]
    [Google Scholar]
  54. Wang S. M., Chen I. C., Su L. Y., Huang K. J., Lei H. Y., Liu C. C.. ( 2010; a). Enterovirus 71 infection of monocytes with antibody-dependent enhancement. . Clin Vaccine Immunol 17:, 1517–1523. [CrossRef] [PubMed]
    [Google Scholar]
  55. Wang Y., Zhang A. C., Ni Z., Herrera A., Walcheck B.. ( 2010; b). ADAM17 activity and other mechanisms of soluble L-selectin production during death receptor-induced leukocyte apoptosis. . J Immunol 184:, 4447–4454. [CrossRef] [PubMed]
    [Google Scholar]
  56. Wang Y., Robertson J. D., Walcheck B.. ( 2011; ). Different signaling pathways stimulate a disintegrin and metalloprotease-17 (ADAM17) in neutrophils during apoptosis and activation. . J Biol Chem 286:, 38980–38988. [CrossRef] [PubMed]
    [Google Scholar]
  57. Wirthmueller U., Kurosaki T., Murakami M. S., Ravetch J. V.. ( 1992; ). Signal transduction by FcγRIII (CD16) is mediated through the γ chain. . J Exp Med 175:, 1381–1390. [CrossRef] [PubMed]
    [Google Scholar]
  58. Yang Y., An T., Gong D., Li D., Peng J., Leng C., Yuan Z., Tong G., Tian Z., Zhang D.. ( 2012; ). Identification of porcine serum proteins modified in response to HP-PRRSV HuN4 infection by two-dimensional differential gel electrophoresis. . Vet Microbiology 158:, 237–246. [CrossRef] [PubMed]
    [Google Scholar]
  59. Yip M. S., Leung N. H., Cheung C. Y., Li P. H., Lee H. H., Daëron M., Peiris J. S., Bruzzone R., Jaume M.. ( 2014; ). Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus. . Virol J 11:, 82. [CrossRef] [PubMed]
    [Google Scholar]
  60. Yoon K. J., Wu L. L., Zimmerman J. J., Hill H. T., Platt K. B.. ( 1996; ). Antibody-dependent enhancement (ADE) of porcine reproductive and respiratory syndrome virus (PRRSV) infection in pigs. . Viral Immunol 9:, 51–63. [CrossRef] [PubMed]
    [Google Scholar]
  61. Yoon K. J., Wu L. L., Zimmerman J. J., Platt K. B.. ( 1997; ). Field isolates of porcine reproductive and respiratory syndrome virus (PRRSV) vary in their susceptibility to antibody dependent enhancement (ADE) of infection. . Vet Microbiol 55:, 277–287. [CrossRef] [PubMed]
    [Google Scholar]
  62. Zhang G., Qiao S., Li Q., Wang X., Duan Y., Wang L., Xiao Z., Xia C.. ( 2006; ). Molecular cloning and expression of the porcine high-affinity immunoglobulin G Fc receptor (FcγRI). . Immunogenetics 58:, 845–849. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000118
Loading
/content/journal/jgv/10.1099/vir.0.000118
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error