1887

Abstract

Hepatocellular carcinoma (HCC) carries a dismal prognosis, with advanced disease being resistant to both radiotherapy and conventional cytotoxic drugs, whilst anti-angiogenic drugs are marginally efficacious. Oncolytic viruses (OVs) offer the promise of selective cancer therapy through direct and immune-mediated mechanisms. The premise of OVs lies in their preferential genomic replication, protein expression and productive infection of malignant cells. Numerous OVs are being tested in preclinical models of HCC, with good evidence of direct and immune-mediated anti-tumour efficacy. Efforts to enhance the performance of these agents have concentrated on engineering OV cellular specificity, immune evasion, enhancing anti-tumour potency and improving delivery. The lead agent in HCC clinical trials, JX-594, a recombinant Wyeth strain vaccinia virus, has demonstrated evidence for significant benefit and earned orphan drug status. Thus, JX-594 appears to be transcending the barrier between novel laboratory science and credible clinical therapy. Relatively few other OVs have entered clinical testing, a hurdle that must be overcome if significant progress is to be made in this field. This review summarizes the preclinical and clinical experience of OV therapy in the difficult-to-treat area of HCC.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000098
2015-07-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/7/1533.html?itemId=/content/journal/jgv/10.1099/vir.0.000098&mimeType=html&fmt=ahah

References

  1. Adair R. A., Roulstone V., Scott K. J., Morgan R., Nuovo G. J., Fuller M., Beirne D., West E. J., Jennings V. A. et al. ( 2012; ). Cell carriage, delivery, and selective replication of an oncolytic virus in tumor in patients. . Sci Transl Med 4:, 38ra77. [CrossRef] [PubMed]
    [Google Scholar]
  2. Ady J. W., Heffner J., Mojica K., Johnsen C., Belin L. J., Love D., Chen C.-T., Pugalenthi A., Klein E. et al. ( 2014; ). Oncolytic immunotherapy using recombinant vaccinia virus GLV-1h68 kills sorafenib-resistant hepatocellular carcinoma efficiently. . Surgery 156:, 263–269. [CrossRef] [PubMed]
    [Google Scholar]
  3. Altomonte J., Ebert O.. ( 2014; ). Sorting out Pandora’s box: discerning the dynamic roles of liver microenvironment in oncolytic virus therapy for hepatocellular carcinoma. . Front Oncol 4:, 85. [CrossRef] [PubMed]
    [Google Scholar]
  4. Altomonte J., Wu L., Chen L., Meseck M., Ebert O., García-Sastre A., Fallon J., Woo S. L. C.. ( 2008; ). Exponential enhancement of oncolytic vesicular stomatitis virus potency by vector-mediated suppression of inflammatory responses in vivo. . Mol Ther 16:, 146–153. [CrossRef] [PubMed]
    [Google Scholar]
  5. Altomonte J., Wu L., Meseck M., Chen L., Ebert O., Garcia-Sastre A., Fallon J., Mandeli J., Woo S. L. C.. ( 2009; ). Enhanced oncolytic potency of vesicular stomatitis virus through vector-mediated inhibition of NK and NKT cells. . Cancer Gene Ther 16:, 266–278.[PubMed]
    [Google Scholar]
  6. Altomonte J., Marozin S., Schmid R. M., Ebert O.. ( 2010; ). Engineered Newcastle disease virus as an improved oncolytic agent against hepatocellular carcinoma. . Mol Ther 18:, 275–284. [CrossRef] [PubMed]
    [Google Scholar]
  7. Argnani R., Marconi P., Volpi I., Bolanos E., Carro E., Ried C., Santamaria E., Pourchet A., Epstein A. L. et al. ( 2011; ). Characterization of herpes simplex virus 1 strains as platforms for the development of oncolytic viruses against liver cancer. . Liver Int 31:, 1542–1553. [CrossRef] [PubMed]
    [Google Scholar]
  8. Averill L., Lee W. M., Karandikar N. J.. ( 2007; ). Differential dysfunction in dendritic cell subsets during chronic HCV infection. . Clin Immunol 123:, 40–49. [CrossRef] [PubMed]
    [Google Scholar]
  9. Bach P., Abel T., Hoffmann C., Gal Z., Braun G., Voelker I., Ball C. R., Johnston I. C. D., Lauer U. M. et al. ( 2013; ). Specific elimination of CD133+ tumor cells with targeted oncolytic measles virus. . Cancer Res 73:, 865–874. [CrossRef] [PubMed]
    [Google Scholar]
  10. Barber G. N.. ( 2004; ). Vesicular stomatitis virus as an oncolytic vector. . Viral Immunol 17:, 516–527. [CrossRef] [PubMed]
    [Google Scholar]
  11. Barker D. D., Berk A. J.. ( 1987; ). Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. . Virology 156:, 107–121. [CrossRef] [PubMed]
    [Google Scholar]
  12. Bayley S. T., Mymryk J. S.. ( 1994; ). Adenovirus e1a proteins and transformation (review). . Int J Oncol 5:, 425–444.[PubMed]
    [Google Scholar]
  13. Bischoff J. R., Kirn D. H., Williams A., Heise C., Horn S., Muna M., Ng L., Nye J. A., Sampson-Johannes A. et al. ( 1996; ). An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. . Science 274:, 373–376. [CrossRef] [PubMed]
    [Google Scholar]
  14. Blechacz B., Splinter P. L., Greiner S., Myers R., Peng K.-W., Federspiel M. J., Russell S. J., LaRusso N. F.. ( 2006; ). Engineered measles virus as a novel oncolytic viral therapy system for hepatocellular carcinoma. . Hepatology 44:, 1465–1477. [CrossRef] [PubMed]
    [Google Scholar]
  15. Bouza C., López-Cuadrado T., Alcázar R., Saz-Parkinson Z., Amate J. M.. ( 2009; ). Meta-analysis of percutaneous radiofrequency ablation versus ethanol injection in hepatocellular carcinoma. . BMC Gastroenterol 9:, 31. [CrossRef] [PubMed]
    [Google Scholar]
  16. Boyle P., Levin B.. (editors) ( 2008; ). World Cancer Report 2008. Lyon:: International Agency for Research on Cancer;.
    [Google Scholar]
  17. Breitbach C. J., Paterson J. M., Lemay C. G., Falls T. J., McGuire A., Parato K. A., Stojdl D. F., Daneshmand M., Speth K. et al. ( 2007; ). Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. . Mol Ther 15:, 1686–1693. [CrossRef] [PubMed]
    [Google Scholar]
  18. Breitbach C. J., Burke J., Jonker D., Stephenson J., Haas A. R., Chow L. Q. M., Nieva J., Hwang T.-H., Moon A. et al. ( 2011; ). Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. . Nature 477:, 99–102. [CrossRef] [PubMed]
    [Google Scholar]
  19. Breitbach C. J., Arulanandam R., De Silva N., Thorne S. H., Patt R., Daneshmand M., Moon A., Ilkow C., Burke J. et al. ( 2013; ). Oncolytic vaccinia virus disrupts tumor-associated vasculature in humans. . Cancer Res 73:, 1265–1275. [CrossRef] [PubMed]
    [Google Scholar]
  20. Breous E., Thimme R.. ( 2011; ). Potential of immunotherapy for hepatocellular carcinoma. . J Hepatol 54:, 830–834. [CrossRef] [PubMed]
    [Google Scholar]
  21. Bryant A. E., Bayer C. R., Chen R. Y. Z., Guth P. H., Wallace R. J., Stevens D. L.. ( 2005; ). Vascular dysfunction and ischemic destruction of tissue in Streptococcus pyogenes infection: the role of streptolysin O-induced platelet/neutrophil complexes. . J Infect Dis 192:, 1014–1022. [CrossRef] [PubMed]
    [Google Scholar]
  22. Burgert H. G., Kvist S.. ( 1985; ). An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. . Cell 41:, 987–997. [CrossRef] [PubMed]
    [Google Scholar]
  23. Cammà C., Schepis F., Orlando A., Albanese M., Shahied L., Trevisani F., Andreone P., Craxì A., Cottone M.. ( 2002; ). Transarterial chemoembolization for unresectable hepatocellular carcinoma: meta-analysis of randomized controlled trials. . Radiology 224:, 47–54. [CrossRef] [PubMed]
    [Google Scholar]
  24. Cawood R., Chen H. H., Carroll F., Bazan-Peregrino M., van Rooijen N., Seymour L. W.. ( 2009; ). Use of tissue-specific microRNA to control pathology of wild-type adenovirus without attenuation of its ability to kill cancer cells. . PLoS Pathog 5:, e1000440. [CrossRef] [PubMed]
    [Google Scholar]
  25. Chen J., Hu J., Dong C. Y., Liang K., Dai Y., Gao J.. ( 2007; ). [ Death mode of Hep-3B and A549 tumor cells induced by bluetongue virus strain HbC3. ]. Zhonghua Zhong Liu Za Zhi 29:, 505–509 (in Chinese).[PubMed]
    [Google Scholar]
  26. Cheng A.-L., Kang Y.-K., Chen Z., Tsao C.-J., Qin S., Kim J. S., Luo R., Feng J., Ye S. et al. ( 2009; ). Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. . Lancet Oncol 10:, 25–34. [CrossRef] [PubMed]
    [Google Scholar]
  27. Chew V., Tow C., Teo M., Wong H. L., Chan J., Gehring A., Loh M., Bolze A., Quek R. et al. ( 2010; ). Inflammatory tumour microenvironment is associated with superior survival in hepatocellular carcinoma patients. . J Hepatol 52:, 370–379. [CrossRef] [PubMed]
    [Google Scholar]
  28. Chung S. M., Advani S. J., Bradley J. D., Kataoka Y., Vashistha K., Yan S. Y., Markert J. M., Gillespie G. Y., Whitley R. J. et al. ( 2002; ). The use of a genetically engineered herpes simplex virus (R7020) with ionizing radiation for experimental hepatoma. . Gene Ther 9:, 75–80. [CrossRef] [PubMed]
    [Google Scholar]
  29. Chung Y. S., Miyatake S.-I., Miyamoto A., Miyamoto Y., Dohi T., Tanigawa N.. ( 2006; ). Oncolytic recombinant herpes simplex virus for treatment of orthotopic liver tumors in nude mice. . Int J Oncol 28:, 793–798.[PubMed]
    [Google Scholar]
  30. Coppin C., Porzsolt F., Awa A., Kumpf J., Coldman A., Wilt T.. ( 2005; ). Immunotherapy for advanced renal cell cancer. . Cochrane Database Syst Rev 2005:, CD001425.[PubMed]
    [Google Scholar]
  31. Crawford J., Cella D., Cleeland C. S., Cremieux P.-Y., Demetri G. D., Sarokhan B. J., Slavin M. B., Glaspy J. A.. ( 2002; ). Relationship between changes in hemoglobin level and quality of life during chemotherapy in anemic cancer patients receiving epoetin alfa therapy. . Cancer 95:, 888–895. [CrossRef] [PubMed]
    [Google Scholar]
  32. Debbas M., White E.. ( 1993; ). Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. . Genes Dev 7:, 546–554. [CrossRef] [PubMed]
    [Google Scholar]
  33. Diaz R. M., Galivo F., Kottke T., Wongthida P., Qiao J., Thompson J., Valdes M., Barber G., Vile R. G.. ( 2007; ). Oncolytic immunovirotherapy for melanoma using vesicular stomatitis virus. . Cancer Res 67:, 2840–2848. [CrossRef] [PubMed]
    [Google Scholar]
  34. Donnelly O. G., Errington-Mais F., Steele L., Hadac E., Jennings V., Scott K., Peach H., Phillips R. M., Bond J. et al. ( 2013; ). Measles virus causes immunogenic cell death in human melanoma. . Gene Ther 20:, 7–15. [CrossRef] [PubMed]
    [Google Scholar]
  35. Doronin K., Shashkova E. V., May S. M., Hofherr S. E., Barry M. A.. ( 2009; ). Chemical modification with high molecular weight polyethylene glycol reduces transduction of hepatocytes and increases efficacy of intravenously delivered oncolytic adenovirus. . Hum Gene Ther 20:, 975–988. [CrossRef] [PubMed]
    [Google Scholar]
  36. Durbin J. E., Hackenmiller R., Simon M. C., Levy D. E.. ( 1996; ). Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. . Cell 84:, 443–450. [CrossRef] [PubMed]
    [Google Scholar]
  37. Edwards S. J., Dix B. R., Myers C. J., Dobson-Le D., Huschtscha L., Hibma M., Royds J., Braithwaite A. W.. ( 2002; ). Evidence that replication of the antitumor adenovirus ONYX-015 is not controlled by the p53 and p14(ARF) tumor suppressor genes. . J Virol 76:, 12483–12490. [CrossRef] [PubMed]
    [Google Scholar]
  38. Engeland C. E., Grossardt C., Veinalde R., Bossow S., Lutz D., Kaufmann J. K., Shevchenko I., Umansky V., Nettelbeck D. M. et al. ( 2014; ). CTLA-4 and PD-L1 checkpoint blockade enhances oncolytic measles virus therapy. . Mol Ther 22:, 1949–1959. [CrossRef] [PubMed]
    [Google Scholar]
  39. Federspiel, M., Wegman, T., Langfield, K., Walker, H. & Stephan, S. (2010). Rhabdoviridae virus preparations. US patent US20100143889 A1
  40. Fernandez M., Porosnicu M., Markovic D., Barber G. N.. ( 2002; ). Genetically engineered vesicular stomatitis virus in gene therapy: application for treatment of malignant disease. . J Virol 76:, 895–904. [CrossRef] [PubMed]
    [Google Scholar]
  41. Ferrantini M., Belardelli F.. ( 2000; ). Gene therapy of cancer with interferon: lessons from tumor models and perspectives for clinical applications. . Semin Cancer Biol 10:, 145–157. [CrossRef] [PubMed]
    [Google Scholar]
  42. Ferreon J. C., Ferreon A. C. M., Li K., Lemon S. M.. ( 2005; ). Molecular determinants of TRIF proteolysis mediated by the hepatitis C virus NS3/4A protease. . J Biol Chem 280:, 20483–20492. [CrossRef] [PubMed]
    [Google Scholar]
  43. Foka P., Pourchet A., Hernandez-Alcoceba R., Doumba P. P., Pissas G., Kouvatsis V., Dalagiorgou G., Kazazi D., Marconi P. et al. ( 2010; ). Novel tumour-specific promoters for transcriptional targeting of hepatocellular carcinoma by herpes simplex virus vectors. . J Gene Med 12:, 956–967. [CrossRef] [PubMed]
    [Google Scholar]
  44. Forner A., Ayuso C., Varela M., Rimola J., Hessheimer A. J., de Lope C. R., Reig M., Bianchi L., Llovet J. M., Bruix J.. ( 2009; ). Evaluation of tumor response after locoregional therapies in hepatocellular carcinoma. Are response evaluation criteria in solid tumors reliable?. Cancer 115:, 616–623. [CrossRef] [PubMed]
    [Google Scholar]
  45. Foy E., Li K., Sumpter R. Jr, Loo Y.-M., Johnson C. L., Wang C., Fish P. M., Yoneyama M., Fujita T. et al. ( 2005; ). Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling. . Proc Natl Acad Sci U S A 102:, 2986–2991. [CrossRef] [PubMed]
    [Google Scholar]
  46. Fu X., Rivera A., Tao L., De Geest B., Zhang X.. ( 2012; ). Construction of an oncolytic herpes simplex virus that precisely targets hepatocellular carcinoma cells. . Mol Ther 20:, 339–346. [CrossRef] [PubMed]
    [Google Scholar]
  47. Gan Y., Gu J., Cai X., Hu J., Liu X. Y., Zhao X.. ( 2008; ). Adenovirus-mediated HCCS1 overexpression elicits a potent antitumor efficacy on human colorectal cancer and hepatoma cells both in vitro and in vivo. . Cancer Gene Ther 15:, 808–816. [CrossRef] [PubMed]
    [Google Scholar]
  48. Gentschev I., Müller M., Adelfinger M., Weibel S., Grummt F., Zimmermann M., Bitzer M., Heisig M., Zhang Q. et al. ( 2011; ). Efficient colonization and therapy of human hepatocellular carcinoma (HCC) using the oncolytic vaccinia virus strain GLV-1h68. . PLoS ONE 6:, e22069. [CrossRef] [PubMed]
    [Google Scholar]
  49. Grünwald G. K., Klutz K., Willhauck M. J., Schwenk N., Senekowitsch-Schmidtke R., Schwaiger M., Zach C., Göke B., Holm P. S., Spitzweg C.. ( 2013; ). Sodium iodide symporter (NIS)-mediated radiovirotherapy of hepatocellular cancer using a conditionally replicating adenovirus. . Gene Ther 20:, 625–633. [CrossRef] [PubMed]
    [Google Scholar]
  50. Habib N. A., Sarraf C. E., Mitry R. R., Havlík R., Nicholls J., Kelly M., Vernon C. C., Gueret-Wardle D., El-Masry R. et al. ( 2001; ). E1B-deleted adenovirus (dl1520) gene therapy for patients with primary and secondary liver tumors. . Hum Gene Ther 12:, 219–226. [CrossRef] [PubMed]
    [Google Scholar]
  51. Habib N., Salama H., Abd El Latif Abu Median A., Isac Anis I., Abd Al Aziz R. A., Sarraf C., Mitry R., Havlik R., Seth P. et al. ( 2002; ). Clinical trial of E1B-deleted adenovirus (dl1520) gene therapy for hepatocellular carcinoma. . Cancer Gene Ther 9:, 254–259. [CrossRef] [PubMed]
    [Google Scholar]
  52. Hales R. K., Banchereau J., Ribas A., Tarhini A. A., Weber J. S., Fox B. A., Drake C. G.. ( 2010; ). Assessing oncologic benefit in clinical trials of immunotherapy agents. . Ann Oncol 21:, 1944–1951. [CrossRef] [PubMed]
    [Google Scholar]
  53. Hamza T., Barnett J. B., Li B.. ( 2010; ). Interleukin 12 a key immunoregulatory cytokine in infection applications. . Int J Mol Sci 11:, 789–806. [CrossRef] [PubMed]
    [Google Scholar]
  54. He G., Lei W., Wang S., Xiao R., Guo K., Xia Y., Zhou X., Zhang K., Liu X., Wang Y.. ( 2012; ). Overexpression of tumor suppressor TSLC1 by a survivin-regulated oncolytic adenovirus significantly inhibits hepatocellular carcinoma growth. . J Cancer Res Clin Oncol 138:, 657–670. [CrossRef] [PubMed]
    [Google Scholar]
  55. Hengstschläger M., Pfeilstöcker M., Wawra E.. ( 1998; ). Thymidine kinase expression. A marker for malignant cells. . Adv Exp Med Biol 431:, 455–460. [CrossRef] [PubMed]
    [Google Scholar]
  56. Heo J., Breitbach C. J., Moon A., Kim C. W., Patt R., Kim M. K., Lee Y. K., Oh S. Y., Woo H. Y. et al. ( 2011; ). Sequential therapy with JX-594, a targeted oncolytic poxvirus, followed by sorafenib in hepatocellular carcinoma: preclinical and clinical demonstration of combination efficacy. . Mol Ther 19:, 1170–1179. [CrossRef] [PubMed]
    [Google Scholar]
  57. Heo J., Reid T., Ruo L., Breitbach C. J., Rose S., Bloomston M., Cho M., Lim H. Y., Chung H. C. et al. ( 2013; a). Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. . Nat Med 19:, 329–336. [CrossRef] [PubMed]
    [Google Scholar]
  58. Heo J., Breitbach C., Cho M., Hwang T.-H., Kim C. W., Jeon U. B., Woo H. Y., Yoon K. T., Lee J. W. et al. ( 2013; b). Phase II trial of Pexa-Vec (pexastimogene devacirepvec; JX-594), an oncolytic and immunotherapeutic vaccinia virus, followed by sorafenib in patients with advanced hepatocellular carcinoma (HCC). . J Clin Oncol 31: (Suppl.), abstract 4122.
    [Google Scholar]
  59. Hsieh J.-L., Lee C.-H., Teo M.-L., Lin Y.-J., Huang Y.-S., Wu C.-L., Shiau A.-L.. ( 2009; ). Transthyretin-driven oncolytic adenovirus suppresses tumor growth in orthotopic and ascites models of hepatocellular carcinoma. . Cancer Sci 100:, 537–545. [CrossRef] [PubMed]
    [Google Scholar]
  60. Hu J., Dong C.-Y., Li J. K. K., Chen D.-E., Liang K., Liu J.. ( 2008; ). Selective in vitro cytotoxic effect of human cancer cells by bluetongue virus-10. . Acta Oncol 47:, 124–134. [CrossRef] [PubMed]
    [Google Scholar]
  61. Investis (2005). ONYX Pharmaceuticals. http://hsprod.investis.com/site/irwizard/onxx/ir.jsp?page=sec_item_new&ipage=3774393&DSEQ=1&SEQ=9&SQDESC=SECTION_PAGE&exp=&subsid=41
  62. Jelic S., Sotiropoulos G. C..ESMO Guidelines Working Group ( 2010; ). Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. . Ann Oncol 21: (Suppl. 5), v59–v64. [CrossRef] [PubMed]
    [Google Scholar]
  63. Johnson P. J.. ( 2001; ). The role of serum alpha-fetoprotein estimation in the diagnosis and management of hepatocellular carcinoma. . Clin Liver Dis 5:, 145–159. [CrossRef] [PubMed]
    [Google Scholar]
  64. Kadowaki N., Antonenko S., Lau J. Y.-N., Liu Y.-J.. ( 2000; ). Natural interferon α/β-producing cells link innate and adaptive immunity. . J Exp Med 192:, 219–226. [CrossRef] [PubMed]
    [Google Scholar]
  65. Kannangai R., Wang J., Liu Q. Z., Sahin F., Torbenson M.. ( 2005; ). Survivin overexpression in hepatocellular carcinoma is associated with p53 dysregulation. . Int J Gastrointest Cancer 35:, 53–60. [CrossRef] [PubMed]
    [Google Scholar]
  66. Kanto T., Inoue M., Miyatake H., Sato A., Sakakibara M., Yakushijin T., Oki C., Itose I., Hiramatsu N. et al. ( 2004; ). Reduced numbers and impaired ability of myeloid and plasmacytoid dendritic cells to polarize T helper cells in chronic hepatitis C virus infection. . J Infect Dis 190:, 1919–1926. [CrossRef] [PubMed]
    [Google Scholar]
  67. Khalid Elamin Elhag, B. E. (2012). Regulation of adenovirus replication by miR-199 confers a selective oncolytic activity in hepatocellular carcinoma. PhD thesis, Università degli studi di Ferrara, Italy.
  68. Kim P.-H., Kim J., Kim T. I., Nam H. Y., Yockman J. W., Kim M., Kim S. W., Yun C.-O.. ( 2011; ). Bioreducible polymer-conjugated oncolytic adenovirus for hepatoma-specific therapy via systemic administration. . Biomaterials 32:, 9328–9342. [CrossRef] [PubMed]
    [Google Scholar]
  69. Kim M. K., Breitbach C. J., Moon A., Heo J., Lee Y. K., Cho M., Lee J. W., Kim S.-G., Kang D. H. et al. ( 2013; ). Oncolytic and immunotherapeutic vaccinia induces antibody-mediated complement-dependent cancer cell lysis in humans. . Sci Transl Med 5:, 85ra63. [CrossRef] [PubMed]
    [Google Scholar]
  70. Kirn, D. (2006). Systemic treatment of metastatic and/or systemically-disseminated cancers using gm-csf-expressing poxviruses. Patent WO 2007030668 A3.
  71. Kitagawa D., Yokota K., Gouda M., Narumi Y., Ohmoto H., Nishiwaki E., Akita K., Kirii Y.. ( 2013; ). Activity-based kinase profiling of approved tyrosine kinase inhibitors. . Genes Cells 18:, 110–122. [CrossRef] [PubMed]
    [Google Scholar]
  72. Kohga K., Tatsumi T., Takehara T., Tsunematsu H., Shimizu S., Yamamoto M., Sasakawa A., Miyagi T., Hayashi N.. ( 2010; ). Expression of CD133 confers malignant potential by regulating metalloproteinases in human hepatocellular carcinoma. . J Hepatol 52:, 872–879. [CrossRef] [PubMed]
    [Google Scholar]
  73. Kottke T., Hall G., Pulido J., Diaz R. M., Thompson J., Chong H., Selby P., Coffey M., Pandha H. et al. ( 2010; ). Antiangiogenic cancer therapy combined with oncolytic virotherapy leads to regression of established tumors in mice. . J Clin Invest 120:, 1551–1560. [CrossRef] [PubMed]
    [Google Scholar]
  74. Kottke T., Errington F., Pulido J., Galivo F., Thompson J., Wongthida P., Diaz R. M., Chong H., Ilett E. et al. ( 2011; ). Broad antigenic coverage induced by vaccination with virus-based cDNA libraries cures established tumors. . Nat Med 17:, 854–859. [CrossRef] [PubMed]
    [Google Scholar]
  75. Kwon H. C., Kim J. H., Kim K. C., Lee K. H., Lee J. H., Lee B. H., Lee K. H., Jang J. J., Lee C. T. et al. ( 2001; ). In vivo antitumor effect of herpes simplex virus thymidine kinase gene therapy in rat hepatocellular carcinoma: feasibility of adenovirus-mediated intra-arterial gene delivery. . Mol Cells 11:, 170–178.[PubMed]
    [Google Scholar]
  76. Lampe J., Bossow S., Weiland T., Smirnow I., Lehmann R., Neubert W., Bitzer M., Lauer U. M.. ( 2013; ). An armed oncolytic measles vaccine virus eliminates human hepatoma cells independently of apoptosis. . Gene Ther 20:, 1033–1041. [CrossRef] [PubMed]
    [Google Scholar]
  77. Lee W. L., Slutsky A. S.. ( 2010; ). Sepsis and endothelial permeability. . N Engl J Med 363:, 689–691. [CrossRef] [PubMed]
    [Google Scholar]
  78. Lee J. H., Roh M. S., Lee Y. K., Kim M. K., Han J. Y., Park B. H., Trown P., Kirn D. H., Hwang T. H.. ( 2010; ). Oncolytic and immunostimulatory efficacy of a targeted oncolytic poxvirus expressing human GM-CSF following intravenous administration in a rabbit tumor model. . Cancer Gene Ther 17:, 73–79. [CrossRef] [PubMed]
    [Google Scholar]
  79. Lencioni R., Llovet J. M.. ( 2010; ). Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. . Semin Liver Dis 30:, 52–60. [CrossRef] [PubMed]
    [Google Scholar]
  80. Li G., Sham J., Yang J., Su C., Xue H., Chua D., Sun L., Zhang Q., Cui Z. et al. ( 2005; a). Potent antitumor efficacy of an E1B 55kDa-deficient adenovirus carrying murine endostatin in hepatocellular carcinoma. . Int J Cancer 113:, 640–648. [CrossRef] [PubMed]
    [Google Scholar]
  81. Li K., Foy E., Ferreon J. C., Nakamura M., Ferreon A. C. M., Ikeda M., Ray S. C., Gale M. Jr, Lemon S. M.. ( 2005; b). Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. . Proc Natl Acad Sci U S A 102:, 2992–2997. [CrossRef] [PubMed]
    [Google Scholar]
  82. Li X.-D., Sun L., Seth R. B., Pineda G., Chen Z. J.. ( 2005; c). Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. . Proc Natl Acad Sci U S A 102:, 17717–17722. [CrossRef] [PubMed]
    [Google Scholar]
  83. Li Y.-L., Wu J., Wei D., Zhang D.-W., Feng H., Chen Z.-N., Bian H.. ( 2009; ). Newcastle disease virus represses the activation of human hepatic stellate cells and reverses the development of hepatic fibrosis in mice. . Liver Int 29:, 593–602. [CrossRef] [PubMed]
    [Google Scholar]
  84. Li J., O’Malley M., Urban J., Sampath P., Guo Z. S., Kalinski P., Thorne S. H., Bartlett D. L.. ( 2011; ). Chemokine expression from oncolytic vaccinia virus enhances vaccine therapies of cancer. . Mol Ther 19:, 650–657. [CrossRef] [PubMed]
    [Google Scholar]
  85. Li J., Liu H., Li L., Wu H., Wang C., Yan Z., Wang Y., Su C., Jin H. et al. ( 2013; ). The combination of an oxygen-dependent degradation domain-regulated adenovirus expressing the chemokine RANTES/CCL5 and NK-92 cells exerts enhanced antitumor activity in hepatocellular carcinoma. . Oncol Rep 29:, 895–902.[PubMed]
    [Google Scholar]
  86. Liang J., Ding T., Guo Z.-W., Yu X.-J., Hu Y.-Z., Zheng L., Xu J.. ( 2013; ). Expression pattern of tumour-associated antigens in hepatocellular carcinoma: association with immune infiltration and disease progression. . Br J Cancer 109:, 1031–1039. [CrossRef] [PubMed]
    [Google Scholar]
  87. Lichtinghagen R., Pietsch D., Bantel H., Manns M. P., Brand K., Bahr M. J.. ( 2013; ). The Enhanced Liver Fibrosis (ELF) score: normal values, influence factors and proposed cut-off values. . J Hepatol 59:, 236–242. [CrossRef] [PubMed]
    [Google Scholar]
  88. Liu T.-C., Hwang T., Park B.-H., Bell J., Kirn D. H.. ( 2008; ). The targeted oncolytic poxvirus JX-594 demonstrates antitumoral, antivascular, and anti-HBV activities in patients with hepatocellular carcinoma. . Mol Ther 16:, 1637–1642. [CrossRef] [PubMed]
    [Google Scholar]
  89. Liu C., Sun B., An N., Tan W., Cao L., Luo X., Yu Y., Feng F., Li B. et al. ( 2011; ). Inhibitory effect of survivin promoter-regulated oncolytic adenovirus carrying P53 gene against gallbladder cancer. . Mol Oncol 5:, 545–554. [CrossRef] [PubMed]
    [Google Scholar]
  90. Liu L., Li W., Wei X., Cui Q., Lou W., Wang G., Hu X., Qian C.. ( 2013; ). Potent antitumor activity of oncolytic adenovirus-mediated SOCS1 for hepatocellular carcinoma. . Gene Ther 20:, 84–92. [CrossRef] [PubMed]
    [Google Scholar]
  91. Llovet J. M., Ricci S., Mazzaferro V., Hilgard P., Gane E., Blanc J.-F., de Oliveira A. C., Santoro A., Raoul J.-L. et al. ( 2008; ). Sorafenib in advanced hepatocellular carcinoma. . N Engl J Med 359:, 378–390. [CrossRef] [PubMed]
    [Google Scholar]
  92. Lolkema M. P., Arkenau H.-T., Harrington K., Roxburgh P., Morrison R., Roulstone V., Twigger K., Coffey M., Mettinger K. et al. ( 2011; ). A phase I study of the combination of intravenous reovirus type 3 Dearing and gemcitabine in patients with advanced cancer. . Clin Cancer Res 17:, 581–588. [CrossRef] [PubMed]
    [Google Scholar]
  93. Lu W., Zheng S., Li X.-F., Huang J.-J., Zheng X., Li Z.. ( 2004; ). Intra-tumor injection of H101, a recombinant adenovirus, in combination with chemotherapy in patients with advanced cancers: a pilot phase II clinical trial. . World J Gastroenterol 10:, 3634–3638.[PubMed]
    [Google Scholar]
  94. Lv Z., Zhang T.-Y., Yin J.-C., Wang H., Sun T., Chen L.-Q., Bai F.-L., Wu W., Ren G.-P., Li D.-S.. ( 2013; ). Enhancement of anti-tumor activity of Newcastle disease virus by the synergistic effect of cytosine deaminase. . Asian Pac J Cancer Prev 14:, 7489–7496. [CrossRef] [PubMed]
    [Google Scholar]
  95. Mach N., Gillessen S., Wilson S. B., Sheehan C., Mihm M., Dranoff G.. ( 2000; ). Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand. . Cancer Res 60:, 3239–3246.[PubMed]
    [Google Scholar]
  96. Maghazachi A. A., Al-Aoukaty A., Schall T. J.. ( 1996; ). CC chemokines induce the generation of killer cells from CD56+ cells. . Eur J Immunol 26:, 315–319. [CrossRef] [PubMed]
    [Google Scholar]
  97. Makower D., Rozenblit A., Kaufman H., Edelman M., Lane M. E., Zwiebel J., Haynes H., Wadler S.. ( 2003; ). Phase II clinical trial of intralesional administration of the oncolytic adenovirus ONYX-015 in patients with hepatobiliary tumors with correlative p53 studies. . Clin Cancer Res 9:, 693–702.[PubMed]
    [Google Scholar]
  98. Mao C.-Y., Hua H.-J., Chen P., Yu D.-C., Cao J., Teng L.-S.. ( 2009; ). Combined use of chemotherapeutics and oncolytic adenovirus in treatment of AFP-expressing hepatocellular carcinoma. . Hepatobiliary Pancreat Dis Int 8:, 282–287.[PubMed]
    [Google Scholar]
  99. MarketWired . ( 2013; ). Jennerex Granted FDA Orphan Drug Designation for Pexa-Vec in Hepatocellular Carcinoma (HCC).. http://www.marketwired.com/press-release/jennerex-granted-fda-orphan-drug-designation-pexa-vec-hepatocellular-carcinoma-hcc-1788419.htm
  100. Mastrangelo M. J., Maguire H. C. Jr, Eisenlohr L. C., Laughlin C. E., Monken C. E., McCue P. A., Kovatich A. J., Lattime E. C.. ( 1999; ). Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. . Cancer Gene Ther 6:, 409–422. [CrossRef] [PubMed]
    [Google Scholar]
  101. McSharry B. P., Burgert H.-G., Owen D. P., Stanton R. J., Prod’homme V., Sester M., Koebernick K., Groh V., Spies T. et al. ( 2008; ). Adenovirus E3/19K promotes evasion of NK cell recognition by intracellular sequestration of the NKG2D ligands major histocompatibility complex class I chain-related proteins A and B. . J Virol 82:, 4585–4594. [CrossRef] [PubMed]
    [Google Scholar]
  102. Melcher A., Parato K., Rooney C. M., Bell J. C.. ( 2011; ). Thunder and lightning: immunotherapy and oncolytic viruses collide. . Mol Ther 19:, 1008–1016. [CrossRef] [PubMed]
    [Google Scholar]
  103. Memon K., Kulik L., Lewandowski R. J., Wang E., Riaz A., Ryu R. K., Sato K. T., Marshall K., Gupta R. et al. ( 2011; ). Radiographic response to locoregional therapy in hepatocellular carcinoma predicts patient survival times. . Gastroenterology 141:, 526–535.e2. [CrossRef] [PubMed]
    [Google Scholar]
  104. Minev B., Kohrt H., Kilinc M., Chen N., Feng A., Pessian M., Geissinger U., Haefner E., Tsoneva D. et al. ( 2014; ). Combination immunotherapy with oncolytic vaccinia virus and checkpoint inhibitor following local tumor irradiation. . J Immunother Cancer 2: (Suppl. 3), P112. . [CrossRef]
    [Google Scholar]
  105. Modlinand J.. ( 2001; ). Vaccinia (Smallpox) Vaccine: Recommendations of the Advisory Committee on Immunization Practices (ACIP), 2001. . MMWR 50:, 1–25.
    [Google Scholar]
  106. Moehler M., Blechacz B., Weiskopf N., Zeidler M., Stremmel W., Rommelaere J., Galle P. R., Cornelis J. J.. ( 2001; ). Effective infection, apoptotic cell killing and gene transfer of human hepatoma cells but not primary hepatocytes by parvovirus H1 and derived vectors. . Cancer Gene Ther 8:, 158–167. [CrossRef] [PubMed]
    [Google Scholar]
  107. Mühlebach M. D., Schaser T., Zimmermann M., Armeanu S., Hanschmann K.-M. O., Cattaneo R., Bitzer M., Lauer U. M., Cichutek K., Buchholz C. J.. ( 2010; ). Liver cancer protease activity profiles support therapeutic options with matrix metalloproteinase-activatable oncolytic measles virus. . Cancer Res 70:, 7620–7629. [CrossRef] [PubMed]
    [Google Scholar]
  108. Nagao K., Tomimatsu M., Endo H., Hisatomi H., Hikiji K.. ( 1999; ). Telomerase reverse transcriptase mRNA expression and telomerase activity in hepatocellular carcinoma. . J Gastroenterol 34:, 83–87. [CrossRef] [PubMed]
    [Google Scholar]
  109. Nguyen D. H., Chen N. G., Zhang Q., Le H. T., Aguilar R. J., Yu Y. A., Cappello J., Szalay A. A.. ( 2013; ). Vaccinia virus-mediated expression of human erythropoietin in tumors enhances virotherapy and alleviates cancer-related anemia in mice. . Mol Ther 21:, 2054–2062. [CrossRef] [PubMed]
    [Google Scholar]
  110. Ninomiya T., Akbar S. M., Masumoto T., Horiike N., Onji M.. ( 1999; ). Dendritic cells with immature phenotype and defective function in the peripheral blood from patients with hepatocellular carcinoma. . J Hepatol 31:, 323–331. [CrossRef] [PubMed]
    [Google Scholar]
  111. O’Shea C. C., Johnson L., Bagus B., Choi S., Nicholas C., Shen A., Boyle L., Pandey K., Soria C. et al. ( 2004; ). Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. . Cancer Cell 6:, 611–623. [CrossRef] [PubMed]
    [Google Scholar]
  112. Obuchi M., Fernandez M., Barber G. N.. ( 2003; ). Development of recombinant vesicular stomatitis viruses that exploit defects in host defense to augment specific oncolytic activity. . J Virol 77:, 8843–8856. [CrossRef] [PubMed]
    [Google Scholar]
  113. Odaka M., Sterman D. H., Wiewrodt R., Zhang Y., Kiefer M., Amin K. M., Gao G.-P., Wilson J. M., Barsoum J. et al. ( 2001; ). Eradication of intraperitoneal and distant tumor by adenovirus-mediated interferon-beta gene therapy is attributable to induction of systemic immunity. . Cancer Res 61:, 6201–6212.[PubMed]
    [Google Scholar]
  114. Ohguchi S., Nakatsukasa H., Higashi T., Ashida K., Nouso K., Ishizaki M., Hino N., Kobayashi Y., Uematsu S., Tsuji T.. ( 1998; ). Expression of α-fetoprotein and albumin genes in human hepatocellular carcinomas: limitations in the application of the genes for targeting human hepatocellular carcinoma in gene therapy. . Hepatology 27:, 599–607. [CrossRef] [PubMed]
    [Google Scholar]
  115. Ong H.-T., Federspiel M. J., Guo C. M., Ooi L. L., Russell S. J., Peng K.-W., Hui K. M.. ( 2013; ). Systemically delivered measles virus-infected mesenchymal stem cells can evade host immunity to inhibit liver cancer growth. . J Hepatol 59:, 999–1006. [CrossRef] [PubMed]
    [Google Scholar]
  116. Pan Q. W., Zhong S. Y., Liu B. S., Liu J., Cai R., Wang Y. G., Liu X. Y., Qian C.. ( 2007; ). Enhanced sensitivity of hepatocellular carcinoma cells to chemotherapy with a Smac-armed oncolytic adenovirus. . Acta Pharmacol Sin 28:, 1996–2004. [CrossRef] [PubMed]
    [Google Scholar]
  117. Pan Q., Liu B., Liu J., Cai R., Liu X., Qian C.. ( 2008; ). Synergistic antitumor activity of XIAP-shRNA and TRAIL expressed by oncolytic adenoviruses in experimental HCC. . Acta Oncol 47:, 135–144. [CrossRef] [PubMed]
    [Google Scholar]
  118. Parato K. A., Breitbach C. J., Le Boeuf F., Wang J., Storbeck C., Ilkow C., Diallo J.-S., Falls T., Burns J. et al. ( 2012; ). The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. . Mol Ther 20:, 749–758. [CrossRef] [PubMed]
    [Google Scholar]
  119. Pardoll D. M.. ( 2012; ). The blockade of immune checkpoints in cancer immunotherapy. . Nat Rev Cancer 12:, 252–264. [CrossRef] [PubMed]
    [Google Scholar]
  120. Park B.-H., Hwang T., Liu T.-C., Sze D. Y., Kim J.-S., Kwon H.-C., Oh S. Y., Han S.-Y., Yoon J.-H. et al. ( 2008; ). Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. . Lancet Oncol 9:, 533–542, 613. [CrossRef] [PubMed]
    [Google Scholar]
  121. Pecora A. L., Rizvi N., Cohen G. I., Meropol N. J., Sterman D., Marshall J. L., Goldberg S., Gross P., O’Neil J. D. et al. ( 2002; ). Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. . J Clin Oncol 20:, 2251–2266. [CrossRef] [PubMed]
    [Google Scholar]
  122. Pei Z., Chu L., Zou W., Zhang Z., Qiu S., Qi R., Gu J., Qian C., Liu X.. ( 2004; ). An oncolytic adenoviral vector of Smac increases antitumor activity of TRAIL against HCC in human cells and in mice. . Hepatology 39:, 1371–1381. [CrossRef] [PubMed]
    [Google Scholar]
  123. Perdiguero B., Esteban M.. ( 2009; ). The interferon system and vaccinia virus evasion mechanisms. . J Interferon Cytokine Res 29:, 581–598. [CrossRef] [PubMed]
    [Google Scholar]
  124. Prestwich R. J., Harrington K. J., Pandha H. S., Vile R. G., Melcher A. A., Errington F.. ( 2008; a). Oncolytic viruses: a novel form of immunotherapy. . Expert Rev Anticancer Ther 8:, 1581–1588. [CrossRef] [PubMed]
    [Google Scholar]
  125. Prestwich R. J., Errington F., Ilett E. J., Morgan R. S. M., Scott K. J., Kottke T., Thompson J., Morrison E. E., Harrington K. J. et al. ( 2008; b). Tumor infection by oncolytic reovirus primes adaptive antitumor immunity. . Clin Cancer Res 14:, 7358–7366. [CrossRef] [PubMed]
    [Google Scholar]
  126. Prestwich R. J., Errington F., Diaz R. M., Pandha H. S., Harrington K. J., Melcher A. A., Vile R. G.. ( 2009; ). The case of oncolytic viruses versus the immune system: waiting on the judgment of Solomon. . Hum Gene Ther 20:, 1119–1132. [CrossRef] [PubMed]
    [Google Scholar]
  127. Raper S. E., Chirmule N., Lee F. S., Wivel N. A., Bagg A., Gao G. P., Wilson J. M., Batshaw M. L.. ( 2003; ). Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. . Mol Genet Metab 80:, 148–158. [CrossRef] [PubMed]
    [Google Scholar]
  128. Raykov Z., Grekova S., Leuchs B., Aprahamian M., Rommelaere J.. ( 2008; ). Arming parvoviruses with CpG motifs to improve their oncosuppressive capacity. . Int J Cancer 122:, 2880–2884. [CrossRef] [PubMed]
    [Google Scholar]
  129. Rempel R. E., Traktman P.. ( 1992; ). Vaccinia virus B1 kinase: phenotypic analysis of temperature-sensitive mutants and enzymatic characterization of recombinant proteins. . J Virol 66:, 4413–4426.[PubMed]
    [Google Scholar]
  130. Sangro, B., Crocenzi, T. & Welling, T. (2013a). Phase I dose escalation study of nivolumab (anti-PD-1; BMS-936558; ONO-4538) in patients (pts) with advanced hepatocellular carcinoma (HCC) with or without chronic viral hepatitis. J Clin Oncol 31, (Suppl.); abstract TPS3111.
  131. Sangro B., Gomez-Martin C., de la Mata M., Iñarrairaegui M., Garralda E., Barrera P., Riezu-Boj J. I., Larrea E., Alfaro C. et al. ( 2013; b). A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. . J Hepatol 59:, 81–88. [CrossRef] [PubMed]
    [Google Scholar]
  132. Sarnow P., Ho Y. S., Williams J., Levine A. J.. ( 1982; ). Adenovirus E1b-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells. . Cell 28:, 387–394. [CrossRef] [PubMed]
    [Google Scholar]
  133. Senzer N. N., Kaufman H. L., Amatruda T., Nemunaitis M., Reid T., Daniels G., Gonzalez R., Glaspy J., Whitman E. et al. ( 2009; ). Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. . J Clin Oncol 27:, 5763–5771. [CrossRef] [PubMed]
    [Google Scholar]
  134. Seyfert-Margolis V., Turka L. A.. ( 2008; ). Marking a path to transplant tolerance. . J Clin Invest 118:, 2684–2686. [CrossRef] [PubMed]
    [Google Scholar]
  135. Shashkova E. V., Doronin K., Senac J. S., Barry M. A.. ( 2008; ). Macrophage depletion combined with anticoagulant therapy increases therapeutic window of systemic treatment with oncolytic adenovirus. . Cancer Res 68:, 5896–5904. [CrossRef] [PubMed]
    [Google Scholar]
  136. Shinozaki K., Ebert O., Woo S. L. C.. ( 2005; ). Eradication of advanced hepatocellular carcinoma in rats via repeated hepatic arterial infusions of recombinant VSV. . Hepatology 41:, 196–203. [CrossRef] [PubMed]
    [Google Scholar]
  137. Shirabe K., Motomura T., Muto J., Toshima T., Matono R., Mano Y., Takeishi K., Ijichi H., Harada N. et al. ( 2010; ). Tumor-infiltrating lymphocytes and hepatocellular carcinoma: pathology and clinical management. . Int J Clin Oncol 15:, 552–558. [CrossRef] [PubMed]
    [Google Scholar]
  138. Song T.-J., Eisenberg D. P., Adusumilli P. S., Hezel M., Fong Y.. ( 2006; ). Oncolytic herpes viral therapy is effective in the treatment of hepatocellular carcinoma cell lines. . J Gastrointest Surg 10:, 532–542. [CrossRef] [PubMed]
    [Google Scholar]
  139. Sprinzl M. F., Reisinger F., Puschnik A., Ringelhan M., Ackermann K., Hartmann D., Schiemann M., Weinmann A., Galle P. R. et al. ( 2013; ). Sorafenib perpetuates cellular anticancer effector functions by modulating the crosstalk between macrophages and natural killer cells. . Hepatology 57:, 2358–2368. [CrossRef] [PubMed]
    [Google Scholar]
  140. Steele L., Errington F., Prestwich R., Ilett E., Harrington K., Pandha H., Coffey M., Selby P., Vile R., Melcher A.. ( 2011; ). Pro-inflammatory cytokine/chemokine production by reovirus treated melanoma cells is PKR/NF-κB mediated and supports innate and adaptive anti-tumour immune priming. . Mol Cancer 10:, 20. [CrossRef] [PubMed]
    [Google Scholar]
  141. Stiffler J. D., Nguyen M., Sohn J. A., Liu C., Kaplan D., Seeger C.. ( 2009; ). Focal distribution of hepatitis C virus RNA in infected livers. . PLoS ONE 4:, e6661. [CrossRef] [PubMed]
    [Google Scholar]
  142. Suzuki K., Alemany R., Yamamoto M., Curiel D. T.. ( 2002; ). The presence of the adenovirus E3 region improves the oncolytic potency of conditionally replicative adenoviruses. . Clin Cancer Res 8:, 3348–3359.[PubMed]
    [Google Scholar]
  143. Tao N., Gao G. P., Parr M., Johnston J., Baradet T., Wilson J. M., Barsoum J., Fawell S. E.. ( 2001; ). Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. . Mol Ther 3:, 28–35. [CrossRef] [PubMed]
    [Google Scholar]
  144. Taub D. D., Sayers T. J., Carter C. R., Ortaldo J. R.. ( 1995; ). Alpha and beta chemokines induce NK cell migration and enhance NK-mediated cytolysis. . J Immunol 155:, 3877–3888.[PubMed]
    [Google Scholar]
  145. Therasse P., Arbuck S. G., Eisenhauer E. A., Wanders J., Kaplan R. S., Rubinstein L., Verweij J., Van Glabbeke M., van Oosterom A. T. et al. ( 2000; ). New guidelines to evaluate the response to treatment in solid tumors. . J Natl Cancer Inst 92:, 205–216. [CrossRef] [PubMed]
    [Google Scholar]
  146. Transgene (2010). Jennerex and Transgene Enter into an Exclusive Partnership for the Development and Commercialization of JX-594 for the Treatment of Cancers. http://www.transgene.fr/wp-content/uploads/PR/172_en.pdf
  147. Transgene (2013a). Transgene Supports Proposed Acquisition of Jennerex by SillaJen. http://www.transgene.fr/wp-content/uploads/PR/243_en.pdf
  148. Transgene. (2013b). Transgene Announces that its Phase 2 study of Pexa-Vec in Second-line Advanced Liver Cancer did not Meet its Primary Endpoint. http://www.transgene.fr/wp-content/uploads/PR/236_en.pdf
  149. Transgene (2014). Global Partners SillaJen, Transgene and Lee’s Pharmaceutical Confirm Clinical Development Plan for Pexa-Vec. http://www.transgene.fr/wp-content/uploads/PR/252_en.pdf
  150. Tsuchiyama T., Nakamoto Y., Sakai Y., Marukawa Y., Kitahara M., Mukaida N., Kaneko S.. ( 2007; ). Prolonged, NK cell-mediated antitumor effects of suicide gene therapy combined with monocyte chemoattractant protein-1 against hepatocellular carcinoma. . J Immunol 178:, 574–583. [CrossRef] [PubMed]
    [Google Scholar]
  151. Urdinguio R. G., Fernandez A. F., Moncada-Pazos A., Huidobro C., Rodriguez R. M., Ferrero C., Martinez-Camblor P., Obaya A. J., Bernal T. et al. ( 2013; ). Immune-dependent and independent antitumor activity of GM-CSF aberrantly expressed by mouse and human colorectal tumors. . Cancer Res 73:, 395–405. [CrossRef] [PubMed]
    [Google Scholar]
  152. Varnholt H., Drebber U., Schulze F., Wedemeyer I., Schirmacher P., Dienes H.-P., Odenthal M.. ( 2008; ). MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. . Hepatology 47:, 1223–1232. [CrossRef] [PubMed]
    [Google Scholar]
  153. Venook A. P.. ( 2000; ). Regional strategies for managing hepatocellular carcinoma. . Oncology (Williston Park) 14:, 347–354, 354, 359, 363–364.[PubMed]
    [Google Scholar]
  154. Vidal L., Pandha H. S., Yap T. A., White C. L., Twigger K., Vile R. G., Melcher A., Coffey M., Harrington K. J., DeBono J. S.. ( 2008; ). A phase I study of intravenous oncolytic reovirus type 3 Dearing in patients with advanced cancer. . Clin Cancer Res 14:, 7127–7137. [CrossRef] [PubMed]
    [Google Scholar]
  155. Vile R. G., Russell S. J., Lemoine N. R.. ( 2000; ). Cancer gene therapy: hard lessons and new courses. . Gene Ther 7:, 2–8. [CrossRef] [PubMed]
    [Google Scholar]
  156. Wada Y., Nakashima O., Kutami R., Yamamoto O., Kojiro M.. ( 1998; ). Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. . Hepatology 27:, 407–414. [CrossRef] [PubMed]
    [Google Scholar]
  157. Waknine, Y. (2005). International Approvals: Procoralan, H101, AP2573. http://www.medscape.com/viewarticle/517543
  158. Wei R.-C., Cao X., Gui J.-H., Zhou X.-M., Zhong D., Yan Q.-L., Huang W.-D., Qian Q.-J., Zhao F.-L., Liu X.-Y.. ( 2011; ). Augmenting the antitumor effect of TRAIL by SOCS3 with double-regulated replicating oncolytic adenovirus in hepatocellular carcinoma. . Hum Gene Ther 22:, 1109–1119. [CrossRef] [PubMed]
    [Google Scholar]
  159. Wei R., Huang G.-L., Zhang M.-Y., Li B.-K., Zhang H.-Z., Shi M., Chen X.-Q., Huang L., Zhou Q.-M. et al. ( 2013; ). Clinical significance and prognostic value of microRNA expression signatures in hepatocellular carcinoma. . Clin Cancer Res 19:, 4780–4791. [CrossRef] [PubMed]
    [Google Scholar]
  160. WHO (2014). Immunization Coverage. Fact sheet No 378. Geneva: World Health Organization. http://www.who.int/mediacentre/factsheets/fs378/en/
  161. Wolchok J. D., Hoos A., O’Day S., Weber J. S., Hamid O., Lebbé C., Maio M., Binder M., Bohnsack O. et al. ( 2009; ). Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. . Clin Cancer Res 15:, 7412–7420. [CrossRef] [PubMed]
    [Google Scholar]
  162. Wongthida P., Diaz R. M., Galivo F., Kottke T., Thompson J., Melcher A., Vile R.. ( 2011; ). VSV oncolytic virotherapy in the B16 model depends upon intact MyD88 signaling. . Mol Ther 19:, 150–158. [CrossRef] [PubMed]
    [Google Scholar]
  163. Wrzesinski S. H., Taddei T. H., Strazzabosco M.. ( 2011; ). Systemic therapy in hepatocellular carcinoma. . Clin Liver Dis 15:, 423–441, vii–x. [CrossRef] [PubMed]
    [Google Scholar]
  164. Wu L., Huang T. G., Meseck M., Altomonte J., Ebert O., Shinozaki K., García-Sastre A., Fallon J., Mandeli J., Woo S. L. C.. ( 2008; ). rVSV(M Delta 51)-M3 is an effective and safe oncolytic virus for cancer therapy. . Hum Gene Ther 19:, 635–647. [CrossRef] [PubMed]
    [Google Scholar]
  165. Wu Y., Kuang D.-M., Pan W.-D., Wan Y.-L., Lao X.-M., Wang D., Li X.-F., Zheng L.. ( 2013; ). Monocyte/macrophage-elicited natural killer cell dysfunction in hepatocellular carcinoma is mediated by CD48/2B4 interactions. . Hepatology 57:, 1107–1116. [CrossRef] [PubMed]
    [Google Scholar]
  166. Wu Y., Yan S., Lv Z., Chen L., Geng J., He J., Yu Q., Yin J., Ren G., Li D.. ( 2014; ). Recombinant Newcastle disease virus Anhinga strain (NDV/Anh-EGFP) for hepatoma therapy. . Technol Cancer Res Treat 13:, 169–175.[PubMed]
    [Google Scholar]
  167. Xiao C.-W., Xue X.-B., Zhang H., Gao W., Yu Y., Chen K., Zheng J.-W., Wang C.-J.. ( 2010; ). Oncolytic adenovirus-mediated MDA-7/IL-24 overexpression enhances antitumor activity in hepatocellular carcinoma cell lines. . Hepatobiliary Pancreat Dis Int 9:, 615–621.[PubMed]
    [Google Scholar]
  168. Xue F., Dong C.-Y., Su Y., Zhu H., Ling W., Liu Y., Xu H., Xiao W., Zhou S., Qi Y.-P.. ( 2005; ). Tumor-targeted therapy with a conditionally replicating mutant of HSV-1 induces regression of xenografted human hepatomas. . Cancer Biol Ther 4:, 1234–1239. [CrossRef] [PubMed]
    [Google Scholar]
  169. Yang Z., Zhang Q., Xu K., Shan J., Shen J., Liu L., Xu Y., Xia F., Bie P. et al. ( 2012; ). Combined therapy with cytokine-induced killer cells and oncolytic adenovirus expressing IL-12 induce enhanced antitumor activity in liver tumor model. . PLoS ONE 7:, e44802. [CrossRef] [PubMed]
    [Google Scholar]
  170. Yasuda Y., Fujita Y., Matsuo T., Koinuma S., Hara S., Tazaki A., Onozaki M., Hashimoto M., Musha T. et al. ( 2003; ). Erythropoietin regulates tumour growth of human malignancies. . Carcinogenesis 24:, 1021–1029. [CrossRef] [PubMed]
    [Google Scholar]
  171. Ye X., Liang M., Meng X., Ren X., Chen H., Li Z.-Y., Ni S., Lieber A., Hu F.. ( 2003; ). Insulation from viral transcriptional regulatory elements enables improvement to hepatoma-specific gene expression from adenovirus vectors. . Biochem Biophys Res Commun 307:, 759–764. [CrossRef] [PubMed]
    [Google Scholar]
  172. Ye X., Lu Q., Zhao Y., Ren Z., Ren X. W., Qiu Q. H., Tong Y., Liang M., Hu F., Chen H. Z.. ( 2005; ). Conditionally replicative adenovirus vector carrying TRAIL gene for enhanced oncolysis of human hepatocellular carcinoma. . Int J Mol Med 16:, 1179–1184.[PubMed]
    [Google Scholar]
  173. Yew P. R., Berk A. J.. ( 1992; ). Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. . Nature 357:, 82–85. [CrossRef] [PubMed]
    [Google Scholar]
  174. Yu F., Wang X., Guo Z. S., Bartlett D. L., Gottschalk S. M., Song X.-T.. ( 2014; ). T-cell engager-armed oncolytic vaccinia virus significantly enhances antitumor therapy. . Mol Ther 22:, 102–111. [CrossRef] [PubMed]
    [Google Scholar]
  175. Zhai B., Sun X.-Y.. ( 2013; ). Mechanisms of resistance to sorafenib and the corresponding strategies in hepatocellular carcinoma. . World J Hepatol 5:, 345–352. [CrossRef] [PubMed]
    [Google Scholar]
  176. Zhang J., Gan Y., Gu J., Hu J., Liu X., Zhao X.. ( 2008; ). Potent anti-hepatoma efficacy of HCCS1 via dual tumor-targeting gene-virotherapy strategy. . Oncol Rep 20:, 1035–1040.[PubMed]
    [Google Scholar]
  177. Zhang K.-J., Qian J., Wang S.-B., Yang Y.. ( 2012; ). Targeting gene-viro-therapy with AFP driving apoptin gene shows potent antitumor effect in hepatocarcinoma. . J Biomed Sci 19:, 20. [CrossRef] [PubMed]
    [Google Scholar]
  178. Zhang Q.-B., Sun H.-C., Zhang K.-Z., Jia Q.-A., Bu Y., Wang M., Chai Z.-T., Zhang Q.-B., Wang W.-Q. et al. ( 2013; ). Suppression of natural killer cells by sorafenib contributes to prometastatic effects in hepatocellular carcinoma. . PLoS ONE 8:, e55945. [CrossRef] [PubMed]
    [Google Scholar]
  179. Zheng F. Q., Xu Y., Yang R. J., Wu B., Tan X. H., Qin Y. D., Zhang Q. W.. ( 2009; ). Combination effect of oncolytic adenovirus therapy and herpes simplex virus thymidine kinase/ganciclovir in hepatic carcinoma animal models. . Acta Pharmacol Sin 30:, 617–627. [CrossRef] [PubMed]
    [Google Scholar]
  180. Zhu Z., Hao X., Yan M., Yao M., Ge C., Gu J., Li J.. ( 2010; ). Cancer stem/progenitor cells are highly enriched in CD133+CD44+ population in hepatocellular carcinoma. . Int J Cancer 126:, 2067–2078. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000098
Loading
/content/journal/jgv/10.1099/vir.0.000098
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error