1887

Abstract

As noncellular organisms, viruses do not have their own metabolism and rely on the metabolism of host cells to provide energy and metabolic substances for their life cycles. Increasing evidence suggests that host cells infected with oncogenic viruses have dramatically altered metabolic requirements and that oncogenic viruses produce substances used for viral replication and virion production by altering host cell metabolism. We focused on the processes by which oncogenic viruses manipulate host lipid metabolism and the lipid metabolism disorders that occur in oncogenic virus-associated diseases. A deeper understanding of viral infections that cause changes in host lipid metabolism could help with the development of new antiviral agents as well as potential new therapeutic targets.

Funding
This study was supported by the:
  • Natural Science Foundation of Shandong Province (Award ZR2020MH302)
    • Principle Award Recipient: BingLuo
  • Natural Science Foundation of Shandong Province (Award ZR2021MC068)
    • Principle Award Recipient: WenLiu
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001861
2023-06-06
2024-05-14
Loading full text...

Full text loading...

References

  1. Speck SH, Ganem D. Viral latency and its regulation: lessons from the gamma-herpesviruses. Cell Host Microbe 2010; 8:100–115 [View Article] [PubMed]
    [Google Scholar]
  2. Mesri EA, Feitelson MA, Munger K. Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe 2014; 15:266–282 [View Article] [PubMed]
    [Google Scholar]
  3. Plummer M, de Martel C, Vignat J, Ferlay J, Bray F et al. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health 2016; 4:e609–16 [View Article] [PubMed]
    [Google Scholar]
  4. Akram N, Imran M, Noreen M, Ahmed F, Atif M et al. Oncogenic role of tumor viruses in humans. Viral Immunol 2017; 30:20–27 [View Article] [PubMed]
    [Google Scholar]
  5. Purdy JG, Luftig MA. Reprogramming of cellular metabolic pathways by human oncogenic viruses. Curr Opin Virol 2019; 39:60–69 [View Article] [PubMed]
    [Google Scholar]
  6. Lange PT, Lagunoff M, Tarakanova VL. Chewing the fat: the conserved ability of DNA viruses to hijack cellular lipid metabolism. Viruses 2019; 11:119 [View Article] [PubMed]
    [Google Scholar]
  7. Rowan-Nash AD, Korry BJ, Mylonakis E, Belenky P. Cross-domain and viral interactions in the microbiome. Microbiol Mol Biol Rev 2019; 83:e00044-18 [View Article] [PubMed]
    [Google Scholar]
  8. Nakamura MT, Nara TY. Structure, function, and dietary regulation of Δ6, Δ5, and Δ9 desaturases. Annu Rev Nutr 2004; 24:345–376 [View Article]
    [Google Scholar]
  9. Park JK, Coffey NJ, Limoges A. The heterogeneity of lipid metabolism in cancer. In Le A. eds The Heterogeneity of Cancer Metabolism Cham: Springer International Publishing; 2018 pp 33–55 [View Article]
    [Google Scholar]
  10. Su X, Abumrad NA. Cellular fatty acid uptake: a pathway under construction. Trends Endocrinol Metab 2009; 20:72–77 [View Article] [PubMed]
    [Google Scholar]
  11. Ruan C, Meng Y, Song H. CD36: an emerging therapeutic target for cancer and its molecular mechanisms. J Cancer Res Clin Oncol 2022; 148:1551–1558 [View Article] [PubMed]
    [Google Scholar]
  12. Amiri M, Yousefnia S, Seyed Forootan F, Peymani M, Ghaedi K et al. Diverse roles of fatty acid binding proteins (FABPs) in development and pathogenesis of cancers. Gene 2018; 676:171–183 [View Article]
    [Google Scholar]
  13. Lass A, Zimmermann R, Oberer M, Zechner R. Lipolysis - A highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res 2011; 50:14–27 [View Article] [PubMed]
    [Google Scholar]
  14. Longo N, Frigeni M, Pasquali M. Carnitine transport and fatty acid oxidation. Biochim Biophys Acta 2016; 1863:2422–2435 [View Article] [PubMed]
    [Google Scholar]
  15. DeBose-Boyd RA, Ye J. SREBPs in lipid metabolism, insulin signaling, and beyond. Trends Biochem Sci 2018; 43:358–368 [View Article] [PubMed]
    [Google Scholar]
  16. Janani C, Ranjitha Kumari BD. PPAR gamma gene--a review. Diabetes Metab Syndr 2015; 9:46–50 [View Article] [PubMed]
    [Google Scholar]
  17. Bi X, Song J, Gao J et al. Activation of liver X receptor attenuates Lysophosphatidylcholine-induced IL-8 expression in endothelial cells via the NF-ΚB pathway and Sumoylation. J Cell Mol Med 2016; 20:2249–2258 [View Article]
    [Google Scholar]
  18. Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev 2000; 14:2819–2830 [View Article] [PubMed]
    [Google Scholar]
  19. Schultz JR, Tu H, Luk A, Repa JJ, Medina JC et al. Role of LXRs in control of lipogenesis. Genes Dev 2000; 14:2831–2838 [View Article] [PubMed]
    [Google Scholar]
  20. Li Y, Xu S, Mihaylova MM, Zheng B, Hou X et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 2011; 13:376–388 [View Article] [PubMed]
    [Google Scholar]
  21. Chabowski A, Górski J, Luiken JJFP, Glatz JFC, Bonen A. Evidence for concerted action of FAT/CD36 and FABPpm to increase fatty acid transport across the plasma membrane. Prostaglandins Leukot Essent Fatty Acids 2007; 77:345–353 [View Article] [PubMed]
    [Google Scholar]
  22. Furuta E, Pai SK, Zhan R, Bandyopadhyay S, Watabe M et al. Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res 2008; 68:1003–1011 [View Article] [PubMed]
    [Google Scholar]
  23. Zhang H. HIF-1 suppresses lipid catabolism to promote cancer progression. Mol Cell Oncol 2015; 2:e980184 [View Article] [PubMed]
    [Google Scholar]
  24. Miller DM, Thomas SD, Islam A, Muench D, Sedoris K. c-Myc and cancer metabolism. Clin Cancer Res 2012; 18:5546–5553 [View Article] [PubMed]
    [Google Scholar]
  25. Polaris Observatory Collaborators Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016: a modelling study. Lancet Gastroenterol Hepatol 2018; 3:383–403 [View Article] [PubMed]
    [Google Scholar]
  26. Liang TJ. Hepatitis B: the virus and disease. Hepatology 2009; 49:S13–21 [View Article] [PubMed]
    [Google Scholar]
  27. Esser K, Cheng X, Wettengel JM, Lucifora J, Hansen-Palmus L et al. Hepatitis B virus targets lipid transport pathways to infect hepatocytes. Cell Mol Gastroenterol Hepatol 2023S2352-345X(23)00051-6 [View Article] [PubMed]
    [Google Scholar]
  28. Terjung R. Triglyceride metabolism in the liver. In Comprehensive Physiology pp 1–22 [View Article]
    [Google Scholar]
  29. Lamontagne RJ, Casciano JC, Bouchard MJ. A broad investigation of the HBV-mediated changes to primary hepatocyte physiology reveals HBV significantly alters metabolic pathways. Metabolism 2018; 83:50–59 [View Article] [PubMed]
    [Google Scholar]
  30. Zhang J, Ling N, Lei Y, Peng M, Hu P et al. Multifaceted interaction between hepatitis B virus infection and lipid metabolism in hepatocytes: a potential target of antiviral therapy for chronic hepatitis B. Front Microbiol 2021; 12:636897 [View Article] [PubMed]
    [Google Scholar]
  31. Zhang H, Li H, Yang Y, Li S, Ren H et al. Differential regulation of host genes including hepatic fatty acid synthase in HBV-transgenic mice. J Proteome Res 2013; 12:2967–2979 [View Article] [PubMed]
    [Google Scholar]
  32. Yang F, Yan S, He Y, Wang F, Song S et al. Expression of hepatitis B virus proteins in transgenic mice alters lipid metabolism and induces oxidative stress in the liver. J Hepatol 2008; 48:12–19 [View Article] [PubMed]
    [Google Scholar]
  33. Yasumoto J, Kasai H, Yoshimura K, Otoguro T, Watashi K et al. Hepatitis B virus prevents excessive viral production via reduction of cell death-inducing DFF45-like effectors. J Gen Virol 2017; 98:1762–1773 [View Article] [PubMed]
    [Google Scholar]
  34. Wang Y, Hao J, Liu X, Wang H, Zeng X et al. The mechanism of apoliprotein A1 down-regulated by Hepatitis B virus. Lipids Health Dis 2016; 15:64 [View Article] [PubMed]
    [Google Scholar]
  35. Wang Y, Wu T, Hu D, Weng X, Wang X et al. Intracellular hepatitis B virus increases hepatic cholesterol deposition in alcoholic fatty liver via hepatitis B core protein. J Lipid Res 2018; 59:58–68 [View Article] [PubMed]
    [Google Scholar]
  36. Li Y-J, Zhu P, Liang Y, Yin W-G, Xiao J-H. Hepatitis B virus induces expression of cholesterol metabolism-related genes via TLR2 in HepG2 cells. World J Gastroenterol 2013; 19:2262–2269 [View Article] [PubMed]
    [Google Scholar]
  37. Oehler N, Volz T, Bhadra OD, Kah J, Allweiss L et al. Binding of hepatitis B virus to its cellular receptor alters the expression profile of genes of bile acid metabolism. Hepatology 2014; 60:1483–1493 [View Article] [PubMed]
    [Google Scholar]
  38. Li H, Zhu W, Zhang L, Lei H, Wu X et al. The metabolic responses to hepatitis B virus infection shed new light on pathogenesis and targets for treatment. Sci Rep 2015; 5:8421 [View Article] [PubMed]
    [Google Scholar]
  39. Huang Q, Lei H, Ding L, Wang Y. Stimulated phospholipid synthesis is key for hepatitis B virus replications. Sci Rep 2019; 9:12989 [View Article] [PubMed]
    [Google Scholar]
  40. Liu Q, Mu M, Chen H, Zhang G, Yang Y et al. Hepatocyte steatosis inhibits hepatitis B virus secretion via induction of endoplasmic reticulum stress. Mol Cell Biochem 2022; 477:2481–2491 [View Article] [PubMed]
    [Google Scholar]
  41. Na T-Y, Shin YK, Roh KJ, Kang S-A, Hong I et al. Liver X receptor mediates hepatitis B virus X protein-induced lipogenesis in hepatitis B virus-associated hepatocellular carcinoma. Hepatology 2009; 49:1122–1131 [View Article] [PubMed]
    [Google Scholar]
  42. Kim K, Kim KH, Kim HH, Cheong J. Hepatitis B virus X protein induces lipogenic transcription factor SREBP1 and fatty acid synthase through the activation of nuclear receptor LXRalpha. Biochem J 2008; 416:219–230 [View Article] [PubMed]
    [Google Scholar]
  43. Kim KH, Shin H-J, Kim K, Choi HM, Rhee SH et al. Hepatitis B virus X protein induces hepatic steatosis via transcriptional activation of SREBP1 and PPARgamma. Gastroenterology 2007; 132:1955–1967 [View Article] [PubMed]
    [Google Scholar]
  44. Qiao L, Wu Q, Lu X, Zhou Y, Fernández-Alvarez A et al. SREBP-1a activation by HBx and the effect on hepatitis B virus enhancer II/core promoter. Biochem Biophys Res Commun 2013; 432:643–649 [View Article] [PubMed]
    [Google Scholar]
  45. Teng C-F, Hsieh W-C, Yang C-W, Su H-M, Tsai T-F et al. A biphasic response pattern of lipid metabolomics in the stage progression of hepatitis B virus X tumorigenesis. Mol Carcinog 2016; 55:105–114 [View Article] [PubMed]
    [Google Scholar]
  46. Wu Y-L, Peng X-E, Zhu Y-B, Yan X-L, Chen W-N et al. Hepatitis B virus X protein induces hepatic steatosis by enhancing the expression of liver fatty acid binding protein. J Virol 2016; 90:1729–1740 [View Article] [PubMed]
    [Google Scholar]
  47. Cho HK, Kim SY, Yoo SK, Choi YH, Cheong J. Fatty acids increase hepatitis B virus X protein stabilization and HBx-induced inflammatory gene expression. FEBS J 2014; 281:2228–2239 [View Article] [PubMed]
    [Google Scholar]
  48. Wang M-D, Wu H, Huang S, Zhang H-L, Qin C-J et al. HBx regulates fatty acid oxidation to promote hepatocellular carcinoma survival during metabolic stress. Oncotarget 2016; 7:6711–6726 [View Article] [PubMed]
    [Google Scholar]
  49. Cui M, Xiao Z, Sun B, Wang Y, Zheng M et al. Involvement of cholesterol in hepatitis B virus X protein-induced abnormal lipid metabolism of hepatoma cells via up-regulating miR-205-targeted ACSL4. Biochem Biophys Res Commun 2014; 445:651–655 [View Article] [PubMed]
    [Google Scholar]
  50. Cui M, Wang Y, Sun B, Xiao Z, Ye L et al. MiR-205 modulates abnormal lipid metabolism of hepatoma cells via targeting acyl-CoA synthetase long-chain family member 1 (ACSL1) mRNA. Biochem Biophys Res Commun 2014; 444:270–275 [View Article] [PubMed]
    [Google Scholar]
  51. Bai P, Xia N, Sun H, Kong Y. Pleiotrophin, a target of miR-384, promotes proliferation, metastasis and lipogenesis in HBV-related hepatocellular carcinoma. J Cell Mol Med 2017; 21:3023–3043 [View Article] [PubMed]
    [Google Scholar]
  52. Lin H-J, Ku K-L, Lin I-H, Yeh C-C. Naringenin attenuates hepatitis B virus X protein-induced hepatic steatosis. BMC Complement Altern Med 2017; 17:505 [View Article] [PubMed]
    [Google Scholar]
  53. Lin Y-L, Shiao M-S, Mettling C, Chou C-K. Cholesterol requirement of hepatitis B surface antigen (HBsAg) secretion. Virology 2003; 314:253–260 [View Article] [PubMed]
    [Google Scholar]
  54. Schmidt NM, Wing PAC, Diniz MO, Pallett LJ, Swadling L et al. Targeting human Acyl-CoA:cholesterol acyltransferase as a dual viral and T cell metabolic checkpoint. Nat Commun 2021; 12:2814 [View Article] [PubMed]
    [Google Scholar]
  55. Sharma P, Balan V, Hernandez J, Rosati M, Williams J et al. Hepatic steatosis in hepatitis C virus genotype 3 infection: does it correlate with body mass index, fibrosis, and HCV risk factors?. Dig Dis Sci 2004; 49:25–29 [View Article] [PubMed]
    [Google Scholar]
  56. Thomopoulos KC, Arvaniti V, Tsamantas AC, Dimitropoulou D, Gogos CA et al. Prevalence of liver steatosis in patients with chronic hepatitis B: a study of associated factors and of relationship with fibrosis. Eur J Gastroenterol Hepatol 2006; 18:233–237 [View Article] [PubMed]
    [Google Scholar]
  57. Bigger CB, Guerra B, Brasky KM, Hubbard G, Beard MR et al. Intrahepatic gene expression during chronic hepatitis C virus infection in chimpanzees. J Virol 2004; 78:13779–13792 [View Article] [PubMed]
    [Google Scholar]
  58. Syed GH, Amako Y, Siddiqui A. Hepatitis C virus hijacks host lipid metabolism. Trends Endocrinol Metab 2010; 21:33–40 [View Article] [PubMed]
    [Google Scholar]
  59. Brines R. Trends in endocrinology and metabolism 1998. Trends Endocrinol Metab 1998; 9:1 [View Article] [PubMed]
    [Google Scholar]
  60. André P, Komurian-Pradel F, Deforges S, Perret M, Berland JL et al. Characterization of low- and very-low-density hepatitis C virus RNA-containing particles. J Virol 2002; 76:6919–6928 [View Article] [PubMed]
    [Google Scholar]
  61. Scheel TKH, Rice CM. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat Med 2013; 19:837–849 [View Article] [PubMed]
    [Google Scholar]
  62. Elabd NS, Tayel SI, Elhamouly MS, Hassanein SA, Kamaleldeen SM et al. Evaluation of microRNA-122 as a biomarker for chronic hepatitis C infection and as a predictor for treatment response to direct-acting antivirals. Hepat Med 2021; 13:9–23 [View Article] [PubMed]
    [Google Scholar]
  63. Esau C, Davis S, Murray SF, Yu XX, Pandey SK et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3:87–98 [View Article] [PubMed]
    [Google Scholar]
  64. Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T et al. The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 2007; 9:1089–1097 [View Article] [PubMed]
    [Google Scholar]
  65. Gastaminza P, Cheng G, Wieland S, Zhong J, Liao W et al. Cellular determinants of hepatitis C virus assembly, maturation, degradation, and secretion. J Virol 2008; 82:2120–2129 [View Article] [PubMed]
    [Google Scholar]
  66. Targett-Adams P, Boulant S, Douglas MW, McLauchlan J. Lipid metabolism and HCV infection. Viruses 2010; 2:1195–1217 [View Article] [PubMed]
    [Google Scholar]
  67. Perlemuter G, Sabile A, Letteron P, Vona G, Topilco A et al. Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: a model of viral-related steatosis. FASEB J 2002; 16:185–194 [View Article] [PubMed]
    [Google Scholar]
  68. García-Mediavilla MV, Pisonero-Vaquero S, Lima-Cabello E, Benedicto I, Majano PL et al. Liver X receptor α-mediated regulation of lipogenesis by core and NS5A proteins contributes to HCV-induced liver steatosis and HCV replication. Laboratory Investigation 2012; 92:1191–1202 [View Article] [PubMed]
    [Google Scholar]
  69. Kim KH, Hong SP, Kim K, Park MJ, Kim KJ et al. HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPARgamma. Biochem Biophys Res Commun 2007; 355:883–888 [View Article] [PubMed]
    [Google Scholar]
  70. Oem J-K, Jackel-Cram C, Li Y-P, Zhou Y, Zhong J et al. Activation of sterol regulatory element-binding protein 1c and fatty acid synthase transcription by hepatitis C virus non-structural protein 2. J Gen Virol 2008; 89:1225–1230 [View Article] [PubMed]
    [Google Scholar]
  71. Park C-Y, Jun H-J, Wakita T, Cheong JH, Hwang SB. Hepatitis C virus nonstructural 4B protein modulates sterol regulatory element-binding protein signaling via the AKT pathway. J Biol Chemist 2009; 284:9237–9246 [View Article] [PubMed]
    [Google Scholar]
  72. Zou C, Tan H, Zeng J, Liu M, Zhang G et al. Hepatitis C virus nonstructural protein 4B induces lipogenesis via the Hippo pathway. Arch Virol 2023; 168:113 [View Article] [PubMed]
    [Google Scholar]
  73. Singaravelu R, Chen R, Lyn RK et al. Hepatitis C virus induced up-regulation of microRNA-27: A novel mechanism for hepatic steatosis. Hepatology 2014; 59:98–108 [View Article] [PubMed]
    [Google Scholar]
  74. Kim K, Kim KH, Ha E, Park JY, Sakamoto N et al. Hepatitis C virus NS5A protein increases hepatic lipid accumulation via induction of activation and expression of PPARgamma. FEBS Lett 2009; 583:2720–2726 [View Article] [PubMed]
    [Google Scholar]
  75. Hofmann S, Krajewski M, Scherer C, Scholz V, Mordhorst V et al. Complex lipid metabolic remodeling is required for efficient hepatitis C virus replication. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1041–1056 [View Article] [PubMed]
    [Google Scholar]
  76. Leu G-Z, Lin T-Y, Hsu JTA. Anti-HCV activities of selective polyunsaturated fatty acids. Biochem Biophys Res Commun 2004; 318:275–280 [View Article] [PubMed]
    [Google Scholar]
  77. Kapadia SB, Chisari FV. Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc Natl Acad Sci 2005; 102:2561–2566 [View Article] [PubMed]
    [Google Scholar]
  78. Nio Y, Hasegawa H, Okamura H, Miyayama Y, Akahori Y et al. Liver-specific mono-unsaturated fatty acid synthase-1 inhibitor for anti-hepatitis C treatment. Antiviral Res 2016; 132:262–267 [View Article] [PubMed]
    [Google Scholar]
  79. Su AI, Pezacki JP, Wodicka L, Brideau AD, Supekova L et al. Genomic analysis of the host response to hepatitis C virus infection. Proc Natl Acad Sci 2002; 99:15669–15674 [View Article] [PubMed]
    [Google Scholar]
  80. Ye J, Wang C, Sumpter R, Brown MS, Goldstein JL et al. Disruption of hepatitis C virus RNA replication through inhibition of host protein geranylgeranylation. Proc Natl Acad Sci 2003; 100:15865–15870 [View Article] [PubMed]
    [Google Scholar]
  81. Zapatero-Belinchón FJ, Ötjengerdes R, Sheldon J, Schulte B, Carriquí-Madroñal B et al. Interdependent impact of lipoprotein receptors and lipid-lowering drugs on HCV infectivity. Cells 2021; 10:1626 [View Article] [PubMed]
    [Google Scholar]
  82. Ikeda M, Abe K, Yamada M, Dansako H, Naka K et al. Different anti-HCV profiles of statins and their potential for combination therapy with interferon. Hepatology 2006; 44:117–125 [View Article] [PubMed]
    [Google Scholar]
  83. Ebell MH. Infectious mononucleosis. JAMA 2016; 315:1532 [View Article] [PubMed]
    [Google Scholar]
  84. Epstein A. Why and How Epstein-Barr virus was discovered 50 years ago. In Münz C. eds Epstein Barr Virus Volume 1: One Herpes Virus: Many Diseases Cham: Springer International Publishing; 2015 pp 3–15 [View Article]
    [Google Scholar]
  85. Young LS, Yap LF, Murray PG. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer 2016; 16:789–802 [View Article] [PubMed]
    [Google Scholar]
  86. Münz C. Latency and lytic replication in Epstein-Barr virus-associated oncogenesis. Nat Rev Microbiol 2019; 17:691–700 [View Article] [PubMed]
    [Google Scholar]
  87. Murata T, Sugimoto A, Inagaki T, Yanagi Y, Watanabe T et al. Molecular basis of Epstein-Barr virus latency establishment and lytic reactivation. Viruses 2021; 13:2344 [View Article] [PubMed]
    [Google Scholar]
  88. Wen Y, Xu H, Han J, Jin R, Chen H. How does Epstein-Barr virus interact with other microbiomes in EBV-driven cancers?. Front Cell Infect Microbiol 2022; 12:852066 [View Article] [PubMed]
    [Google Scholar]
  89. Li Y, Webster-Cyriaque J, Tomlinson CC, Yohe M, Kenney S. Fatty acid synthase expression is induced by the Epstein-Barr virus immediate-early protein BRLF1 and is required for lytic viral gene expression. J Virol 2004; 78:4197–4206 [View Article] [PubMed]
    [Google Scholar]
  90. Shinozaki-Ushiku A, Kunita A, Fukayama M. Update on Epstein-Barr virus and gastric cancer (review). Int J Oncol 2015; 46:1421–1434 [View Article] [PubMed]
    [Google Scholar]
  91. Ribeiro J, Oliveira C, Malta M, Sousa H. Epstein-Barr virus gene expression and latency pattern in gastric carcinomas: a systematic review. Future Oncol 2017; 13:567–579 [View Article] [PubMed]
    [Google Scholar]
  92. Kaiser C, Laux G, Eick D, Jochner N, Bornkamm GW et al. The proto-oncogene c-myc is a direct target gene of Epstein-Barr virus nuclear antigen 2. J Virol 1999; 73:4481–4484 [View Article] [PubMed]
    [Google Scholar]
  93. Zhao B, Maruo S, Cooper A, R Chase M, Johannsen E et al. RNAs induced by Epstein-Barr virus nuclear antigen 2 in lymphoblastoid cell lines. Proc Natl Acad Sci 2006; 103:1900–1905 [View Article] [PubMed]
    [Google Scholar]
  94. Zhao B, Zou J, Wang H, Johannsen E, Peng C et al. Epstein-Barr virus exploits intrinsic B-lymphocyte transcription programs to achieve immortal cell growth. Proc Natl Acad Sci 2011; 108:14902–14907 [View Article] [PubMed]
    [Google Scholar]
  95. Darekar S, Georgiou K, Yurchenko M, Yenamandra SP, Chachami G et al. Epstein-Barr virus immortalization of human B-cells leads to stabilization of hypoxia-induced factor 1 alpha, congruent with the Warburg effect. PLoS One 2012; 7:e42072 [View Article] [PubMed]
    [Google Scholar]
  96. Bajaj BG, Murakami M, Cai Q, Verma SC, Lan K et al. Epstein-Barr virus nuclear antigen 3C interacts with and enhances the stability of the c-Myc oncoprotein. J Virol 2008; 82:4082–4090 [View Article] [PubMed]
    [Google Scholar]
  97. D’Ippolito S ID, Amar MS et al. The interplay between immune system and microbiota in gynecological diseases: a narrative review. Eur Rev Med Pharmacol 2020; 15:5676–5690 [View Article]
    [Google Scholar]
  98. O’Neil JD, Owen TJ, Wood VHJ, Date KL, Valentine R et al. Epstein-Barr virus-encoded EBNA1 modulates the AP-1 transcription factor pathway in nasopharyngeal carcinoma cells and enhances angiogenesis in vitro. J Gen Virol 2008; 89:2833–2842 [View Article] [PubMed]
    [Google Scholar]
  99. Wang LW, Jiang S, Gewurz BE. Epstein-Barr virus LMP1-mediated oncogenicity. J Virol 2017; 91:e01718-16 [View Article] [PubMed]
    [Google Scholar]
  100. Zhang J, Jia L, Lin W, Yip YL, Lo KW et al. Epstein-Barr virus-encoded latent membrane protein 1 upregulates glucose transporter 1 transcription via the mTORC1/NF-κB signaling pathways. J Virol 2017; 91:e02168-16 [View Article] [PubMed]
    [Google Scholar]
  101. Lo AK-F, Dawson CW, Young LS, Ko C-W, Hau P-M et al. Activation of the FGFR1 signalling pathway by the Epstein-Barr virus-encoded LMP1 promotes aerobic glycolysis and transformation of human nasopharyngeal epithelial cells. J Pathol 2015; 237:238–248 [View Article] [PubMed]
    [Google Scholar]
  102. Lo AK-F, Lung RW-M, Dawson CW, Young LS, Ko C-W et al. Activation of sterol regulatory element-binding protein 1 (SREBP1)-mediated lipogenesis by the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) promotes cell proliferation and progression of nasopharyngeal carcinoma. J Pathol 2018; 246:180–190 [View Article] [PubMed]
    [Google Scholar]
  103. Wang LW, Shen H, Nobre L, Ersing I, Paulo JA et al. Epstein-barr-virus-induced one-carbon metabolism drives B cell transformation. Cell Metab 2019; 30:539–555 [View Article] [PubMed]
    [Google Scholar]
  104. Hulse M, Johnson SM, Boyle S, Caruso LB, Tempera I. Epstein-Barr virus-encoded latent membrane protein 1 and B-cell growth transformation induce lipogenesis through fatty acid synthase. J Virol 2021; 95:e01857-20 [View Article] [PubMed]
    [Google Scholar]
  105. Wakisaka N, Kondo S, Yoshizaki T, Murono S, Furukawa M et al. Epstein-Barr virus latent membrane protein 1 induces synthesis of hypoxia-inducible factor 1 alpha. Mol Cell Biol 2004; 24:5223–5234 [View Article] [PubMed]
    [Google Scholar]
  106. Sung W-W, Chu Y-C, Chen P-R, Liao M-H, Lee J-W. Positive regulation of HIF-1A expression by EBV oncoprotein LMP1 in nasopharyngeal carcinoma cells. Cancer Lett 2016; 382:21–31 [View Article] [PubMed]
    [Google Scholar]
  107. Kondo S, Seo SY, Yoshizaki T, Wakisaka N, Furukawa M et al. EBV latent membrane protein 1 up-regulates hypoxia-inducible factor 1alpha through Siah1-mediated down-regulation of prolyl hydroxylases 1 and 3 in nasopharyngeal epithelial cells. Cancer Res 2006; 66:9870–9877 [View Article] [PubMed]
    [Google Scholar]
  108. Chen H, Hutt-Fletcher L, Cao L, Hayward SD. A positive autoregulatory loop of LMP1 expression and STAT activation in epithelial cells latently infected with Epstein-Barr virus. J Virol 2003; 77:4139–4148 [View Article] [PubMed]
    [Google Scholar]
  109. Lo AK-F, Lo K-W, Ko C-W, Young LS, Dawson CW. Inhibition of the LKB1-AMPK pathway by the Epstein-Barr virus-encoded LMP1 promotes proliferation and transformation of human nasopharyngeal epithelial cells. J Pathol 2013; 230:336–346 [View Article] [PubMed]
    [Google Scholar]
  110. Kong Q-L, Hu L-J, Cao J-Y, Huang Y-J, Xu L-H et al. Epstein-Barr virus-encoded LMP2A induces an epithelial-mesenchymal transition and increases the number of side population stem-like cancer cells in nasopharyngeal carcinoma. PLoS Pathog 2010; 6:e1000940 [View Article] [PubMed]
    [Google Scholar]
  111. Zheng S, Matskova L, Zhou X, Xiao X, Huang G et al. Downregulation of adipose triglyceride lipase by EB viral-encoded LMP2A links lipid accumulation to increased migration in nasopharyngeal carcinoma. Mol Oncol 2020; 14:3234–3252 [View Article] [PubMed]
    [Google Scholar]
  112. Liu W, Xiao H, Song H, An S, Luo B. Transcriptome sequencing of LMP2A-transfected gastric cancer cells identifies potential biomarkers in EBV-associated gastric cancer. Virus Genes 2022; 58:515–526 [View Article] [PubMed]
    [Google Scholar]
  113. Daker M, Bhuvanendran S, Ahmad M, Takada K, Khoo AS-B. Deregulation of lipid metabolism pathway genes in nasopharyngeal carcinoma cells. Mol Med Rep 2013; 7:731–741 [View Article] [PubMed]
    [Google Scholar]
  114. Yoon SJ, Kim JY, Long NP, Min JE, Kim HM et al. Comprehensive multi-omics analysis reveals aberrant metabolism of epstein-barr-virus-associated gastric carcinoma. Cells 2019; 8:1220 [View Article] [PubMed]
    [Google Scholar]
  115. Staskus KA, Zhong W, Gebhard K, Herndier B, Wang H et al. Kaposi’s sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J Virol 1997; 71:715–719 [View Article] [PubMed]
    [Google Scholar]
  116. Ganem D. KSHV i and the pathogenesis of Kaposi's sarcoma. Annu Rev Pathol 2006; 1:273–296 [View Article] [PubMed]
    [Google Scholar]
  117. Delgado T, Sanchez EL, Camarda R, Lagunoff M. Global metabolic profiling of infection by an oncogenic virus: KSHV induces and requires lipogenesis for survival of latent infection. PLoS Pathog 2012; 8:e1002866 [View Article] [PubMed]
    [Google Scholar]
  118. Wang C, Xu C, Sun M, Luo D, Liao D-F et al. Acetyl-CoA carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis. Biochem Biophys Res Commun 2009; 385:302–306 [View Article] [PubMed]
    [Google Scholar]
  119. Kuhajda FP, Pizer ES, Li JN, Mani NS, Frehywot GL et al. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc Natl Acad Sci 2000; 97:3450–3454 [View Article] [PubMed]
    [Google Scholar]
  120. Bhatt AP, Jacobs SR, Freemerman AJ, Makowski L, Rathmell JC et al. Dysregulation of fatty acid synthesis and glycolysis in non-Hodgkin lymphoma. Proc Natl Acad Sci 2012; 109:11818–11823 [View Article] [PubMed]
    [Google Scholar]
  121. Sharma-Walia N, Chandran K, Patel K, Veettil MV, Marginean A. The Kaposi’s sarcoma-associated herpesvirus (KSHV)-induced 5-lipoxygenase-leukotriene B4 cascade plays key roles in KSHV latency, monocyte recruitment, and lipogenesis. J Virol 2014; 88:2131–2156 [View Article] [PubMed]
    [Google Scholar]
  122. Lodhi IJ, Semenkovich CF. Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metab 2014; 19:380–392 [View Article] [PubMed]
    [Google Scholar]
  123. Sychev ZE, Hu A, DiMaio TA, Gitter A, Camp ND et al. Integrated systems biology analysis of KSHV latent infection reveals viral induction and reliance on peroxisome mediated lipid metabolism. PLoS Pathog 2017; 13:e1006256 [View Article] [PubMed]
    [Google Scholar]
  124. Tso FY, Kossenkov AV, Lidenge SJ, Ngalamika O, Ngowi JR et al. RNA-Seq of Kaposi’s sarcoma reveals alterations in glucose and lipid metabolism. PLoS Pathog 2018; 14:e1006844 [View Article] [PubMed]
    [Google Scholar]
  125. Sprinz E, Lazzaretti RK, Kuhmmer R, Ribeiro JP. Dyslipidemia in HIV-infected individuals. Braz J Infect Dis 2010; 14:575–588 [View Article] [PubMed]
    [Google Scholar]
  126. Sellmeyer DE, Grunfeld C. Endocrine and metabolic disturbances in human immunodeficiency virus infection and the acquired immune deficiency syndrome. Endocr Rev 1996; 17:518–532 [View Article] [PubMed]
    [Google Scholar]
  127. Si H, Verma SC, Lampson MA, Cai Q, Robertson ES. Kaposi’s sarcoma-associated herpesvirus-encoded LANA can interact with the nuclear mitotic apparatus protein to regulate genome maintenance and segregation. J Virol 2008; 82:6734–6746 [View Article] [PubMed]
    [Google Scholar]
  128. Cai Q, Lan K, Verma SC, Si H, Lin D et al. Kaposi’s sarcoma-associated herpesvirus latent protein LANA interacts with HIF-1 alpha to upregulate RTA expression during hypoxia: latency control under low oxygen conditions. J Virol 2006; 80:7965–7975 [View Article] [PubMed]
    [Google Scholar]
  129. Cai Q, Murakami M, Si H, Robertson ES. A potential alpha-helix motif in the amino terminus of LANA encoded by Kaposi’s sarcoma-associated herpesvirus is critical for nuclear accumulation of HIF-1alpha in normoxia. J Virol 2007; 81:10413–10423 [View Article] [PubMed]
    [Google Scholar]
  130. Shin YC, Joo C-H, Gack MU, Lee H-R, Jung JU. Kaposi’s sarcoma-associated herpesvirus viral IFN regulatory factor 3 stabilizes hypoxia-inducible factor-1 alpha to induce vascular endothelial growth factor expression. Cancer Res 2008; 68:1751–1759 [View Article] [PubMed]
    [Google Scholar]
  131. Bubman D, Guasparri I, Cesarman E. Deregulation of c-Myc in primary effusion lymphoma by Kaposi’s sarcoma herpesvirus latency-associated nuclear antigen. Oncogene 2007; 26:4979–4986 [View Article] [PubMed]
    [Google Scholar]
  132. Lubyova B, Kellum MJ, Frisancho JA, Pitha PM. Stimulation of c-Myc transcriptional activity by vIRF-3 of Kaposi sarcoma-associated herpesvirus. J Biol Chem 2007; 282:31944–31953 [View Article] [PubMed]
    [Google Scholar]
  133. Baresova P, Pitha PM, Lubyova B. Kaposi sarcoma-associated herpesvirus vIRF-3 protein binds to F-box of Skp2 protein and acts as a regulator of c-Myc protein function and stability. J Biol Chem 2012; 287:16199–16208 [View Article] [PubMed]
    [Google Scholar]
  134. Wu H, Liu L, Xiao J, Chi M, Qu Y et al. Glycosylation of KSHV encoded vGPCR functions in its signaling and tumorigenicity. Viruses 2015; 7:1627–1641 [View Article] [PubMed]
    [Google Scholar]
  135. Sodhi A, Montaner S, Patel V, Zohar M, Bais C et al. The Kaposi’s sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1alpha. Cancer Res 2000; 60:4873–4880 [PubMed]
    [Google Scholar]
  136. Jham BC, Ma T, Hu J, Chaisuparat R, Friedman ER et al. Amplification of the angiogenic signal through the activation of the TSC/mTOR/HIF axis by the KSHV vGPCR in Kaposi’s sarcoma. PLoS One 2011; 6:e19103 [View Article] [PubMed]
    [Google Scholar]
  137. Anders PM, Zhang Z, Bhende PM, Giffin L, Damania B. The KSHV K1 Protein Modulates AMPK function to enhance cell survival. PLoS Pathog 2016; 12:e1005985 [View Article] [PubMed]
    [Google Scholar]
  138. Karki R, Lang SM, Means RE. The MARCH family E3 ubiquitin ligase K5 alters monocyte metabolism and proliferation through receptor tyrosine kinase modulation. PLoS Pathog 2011; 7:e1001331 [View Article] [PubMed]
    [Google Scholar]
  139. Gallaher AM, Das S, Xiao Z, Andresson T, Kieffer-Kwon P et al. Proteomic screening of human targets of viral microRNAs reveals functions associated with immune evasion and angiogenesis. PLoS Pathog 2013; 9:e1003584 [View Article] [PubMed]
    [Google Scholar]
  140. Ramalingam D, Happel C, Ziegelbauer JM. Kaposi’s sarcoma-associated herpesvirus microRNAs repress breakpoint cluster region protein expression, enhance Rac1 activity, and increase in vitro angiogenesis. J Virol 2015; 89:4249–4261 [View Article] [PubMed]
    [Google Scholar]
  141. Blanc M, Hsieh WY, Robertson KA, Kropp KA, Forster T et al. The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response. Immunity 2013; 38:106–118 [View Article] [PubMed]
    [Google Scholar]
  142. Yogev O, Lagos D, Enver T, Boshoff C. Kaposi’s sarcoma herpesvirus microRNAs induce metabolic transformation of infected cells. PLoS Pathog 2014; 10:e1004400 [View Article] [PubMed]
    [Google Scholar]
  143. Serquiña AKP, Kambach DM, Sarker O, Ziegelbauer JM. Viral microRNAs repress the cholesterol pathway, and 25-hydroxycholesterol inhibits infection. mBio 2017; 8:e00576-17 [View Article] [PubMed]
    [Google Scholar]
  144. Liu S-Y, Aliyari R, Chikere K, Li G, Marsden MD et al. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity 2013; 38:92–105 [View Article] [PubMed]
    [Google Scholar]
  145. McBride AA. Mechanisms and strategies of papillomavirus replication. Biol Chem 2017; 398:919–927 [View Article] [PubMed]
    [Google Scholar]
  146. Stünkel W, Bernard H-U. The chromatin structure of the long control region of human papillomavirus type 16 represses viral oncoprotein expression. J Virol 1999; 73:1918–1930 [View Article] [PubMed]
    [Google Scholar]
  147. Zheng Z-M, Baker CC. Papillomavirus genome structure, expression, and post-transcriptional regulation. Front Biosci 2006; 11:2286–2302 [View Article] [PubMed]
    [Google Scholar]
  148. de Sanjosé S, Brotons M, Pavón MA. The natural history of human papillomavirus infection. Best Pract Res Clin Obstet Gynaecol 2018; 47:2–13 [View Article] [PubMed]
    [Google Scholar]
  149. Horvath JDC, Kops NL, Caierão J, Bessel M, Hohenberger G et al. Human papillomavirus knowledge, beliefs, and behaviors: a questionnaire adaptation. Eur J Obstet Gynecol Reprod Biol 2018; 230:103–108 [View Article] [PubMed]
    [Google Scholar]
  150. Zietkowski D, deSouza NM, Davidson RL, Payne GS. Characterisation of mobile lipid resonances in tissue biopsies from patients with cervical cancer and correlation with cytoplasmic lipid droplets. NMR Biomed 2013; 26:1096–1102 [View Article] [PubMed]
    [Google Scholar]
  151. Mondal S, Roy D, Sarkar Bhattacharya S, Jin L, Jung D et al. Therapeutic targeting of PFKFB3 with a novel glycolytic inhibitor PFK158 promotes lipophagy and chemosensitivity in gynecologic cancers. Int J Cancer 2019; 144:178–189 [View Article] [PubMed]
    [Google Scholar]
  152. Abudula A, Rouzi N, Xu L, Yang Y, Hasimu A. Tissue-based metabolomics reveals potential biomarkers for cervical carcinoma and HPV infection. Bosn J Basic Med Sci 2020; 20:78–87 [View Article] [PubMed]
    [Google Scholar]
  153. Castelli S, Ciccarone F, Tavian D, Ciriolo MR. ROS-dependent HIF1α activation under forced lipid catabolism entails glycolysis and mitophagy as mediators of higher proliferation rate in cervical cancer cells. J Exp Clin Cancer Res 2021; 40:94 [View Article] [PubMed]
    [Google Scholar]
  154. Prusinkiewicz MA, Gameiro SF, Ghasemi F, Dodge MJ, Zeng PYF et al. Survival-associated metabolic genes in human papillomavirus-positive head and neck cancers. Cancers 2020; 12:253 [View Article] [PubMed]
    [Google Scholar]
  155. Shang C, Wang W, Liao Y, Chen Y, Liu T et al. LNMICC promotes nodal metastasis of cervical cancer by reprogramming fatty acid metabolism. Cancer Res 2018; 78:877–890 [View Article] [PubMed]
    [Google Scholar]
  156. Cruz-Gregorio A, Manzo-Merino J, Gonzaléz-García MC, Pedraza-Chaverri J, Medina-Campos ON et al. Human papillomavirus types 16 and 18 early-expressed proteins differentially modulate the cellular redox state and DNA damage. Int J Biol Sci 2018; 14:21–35 [View Article] [PubMed]
    [Google Scholar]
  157. Jung S-N, Yang WK, Kim J, Kim HS, Kim EJ et al. Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells. Carcinogenesis 2008; 29:713–721 [View Article] [PubMed]
    [Google Scholar]
  158. Wang T, Liu H, Lian G, Zhang S-Y, Wang X et al. HIF1α-induced glycolysis metabolism is essential to the activation of inflammatory macrophages. Mediators Inflamm 2017; 2017:9029327 [View Article] [PubMed]
    [Google Scholar]
  159. Bravo IG, Crusius K, Alonso A. The E5 protein of the human papillomavirus type 16 modulates composition and dynamics of membrane lipids in keratinocytes. Arch Virol 2005; 150:231–246 [View Article] [PubMed]
    [Google Scholar]
  160. Suprynowicz FA, Disbrow GL, Krawczyk E, Simic V, Lantzky K et al. HPV-16 E5 oncoprotein upregulates lipid raft components caveolin-1 and ganglioside GM1 at the plasma membrane of cervical cells. Oncogene 2008; 27:1071–1078 [View Article] [PubMed]
    [Google Scholar]
  161. Zehbe I, Lichtig H, Westerback A, Lambert PF, Tommasino M et al. Rare human papillomavirus 16 E6 variants reveal significant oncogenic potential. Mol Cancer 2011; 10:77 [View Article] [PubMed]
    [Google Scholar]
  162. Chopjitt P, Pientong C, Bumrungthai S, Kongyingyoes B, Ekalaksananan T. Activities of E6 protein of human papillomavirus 16 Asian variant on miR-21 up-regulation and expression of human immune response genes. Asian Pac J Cancer Prev 2015; 16:3961–3968 [View Article] [PubMed]
    [Google Scholar]
  163. Ni K, Wang D, Xu H, Mei F, Wu C et al. miR-21 promotes non-small cell lung cancer cells growth by regulating fatty acid metabolism. Cancer Cell Int 2019; 19:219 [View Article] [PubMed]
    [Google Scholar]
  164. Spangle JM, Münger K. The human papillomavirus type 16 E6 oncoprotein activates mTORC1 signaling and increases protein synthesis. J Virol 2010; 84:9398–9407 [View Article] [PubMed]
    [Google Scholar]
  165. Tang J-Y, Li D-Y, He L, Qiu X-S, Wang E-H et al. HPV 16 E6/E7 promote the glucose uptake of GLUT1 in lung cancer through downregulation of TXNIP due to inhibition of PTEN phosphorylation. Front Oncol 2020; 10:559543 [View Article] [PubMed]
    [Google Scholar]
  166. Zheng S-R, Zhang H-R, Zhang Z-F, Lai S-Y, Huang L-J et al. Human papillomavirus 16 E7 oncoprotein alters the expression profiles of circular RNAs in Caski cells. J Cancer 2018; 9:3755–3764 [View Article] [PubMed]
    [Google Scholar]
  167. Yoshida M, Miyoshi I, Hinuma Y. Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease. Proc Natl Acad Sci 1982; 79:2031–2035 [View Article] [PubMed]
    [Google Scholar]
  168. Gessain A, Barin F, Vernant JC, Gout O, Maurs L et al. Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis. Lancet 1985; 2:407–410 [View Article] [PubMed]
    [Google Scholar]
  169. Derakhshan R, Mirhosseini A, Ahmadi Ghezeldasht S, Jahantigh HR, Mohareri M et al. Abnormal vitamin D and lipid profile in HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients. Mol Biol Rep 2020; 47:631–637 [View Article] [PubMed]
    [Google Scholar]
  170. Carvalho LD de, Gadelha SR, Marin LJ, Brito-Melo GEA, Martins CPS et al. Are lipid disorders involved in the predominance of human T-lymphotropic virus-1 infections in women?. Rev Soc Bras Med Trop 2015; 48:759–761 [View Article] [PubMed]
    [Google Scholar]
  171. Zuo X, Zhou R, Yang S, Ma G. HTLV-1 persistent infection and ATLL oncogenesis. J Med Virol 2023; 95:e28424 [View Article] [PubMed]
    [Google Scholar]
  172. Sripadi P, Shrestha B, Easley RL, Carpio L, Kehn-Hall K et al. Direct detection of diverse metabolic changes in virally transformed and tax-expressing cells by mass spectrometry. PLoS One 2010; 5:e12590 [View Article] [PubMed]
    [Google Scholar]
  173. Koizumi A, Mizukami H, Inoue M. pX gene causes hypercholesterolemia in hypercholesterolemia-resistant BALB/c mice. Biol Pharm Bull 2005; 28:1731–1735 [View Article] [PubMed]
    [Google Scholar]
  174. Javadifar A, Ahmadi Ghezeldasht S, Rahimi H, Valizadeh N, Borojerdi ZR et al. Possible deterioration of Apolipoproteins expression by HTLV-1 infection in favor of infected leukemic cells in adult T-cell leukemia/lymphoma (ATLL). Gene Reports 2022; 26:101531 [View Article]
    [Google Scholar]
  175. Satou Y, Yasunaga J, Yoshida M, Matsuoka M. HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci 2006; 103:720–725 [View Article] [PubMed]
    [Google Scholar]
  176. Koya J, Saito Y, Kameda T, Kogure Y, Yuasa M et al. Single-cell analysis of the multicellular ecosystem in viral carcinogenesis by HTLV-1. Blood Cancer Discov 2021; 2:450–467 [View Article] [PubMed]
    [Google Scholar]
  177. Tomita M, Semenza GL, Michiels C, Matsuda T, Uchihara J-N et al. Activation of hypoxia-inducible factor 1 in human T-cell leukaemia virus type 1-infected cell lines and primary adult T-cell leukaemia cells. Biochem J 2007; 406:317–323 [View Article] [PubMed]
    [Google Scholar]
  178. Vandermeulen C, O’Grady T, Wayet J, Galvan B, Maseko S et al. The HTLV-1 viral oncoproteins Tax and HBZ reprogram the cellular mRNA splicing landscape. PLoS Pathog 2021; 17:e1009919 [View Article] [PubMed]
    [Google Scholar]
  179. Ma G, Yasunaga J-I, Matsuoka M. Multifaceted functions and roles of HBZ in HTLV-1 pathogenesis. Retrovirology 2016; 13:16 [View Article] [PubMed]
    [Google Scholar]
  180. Farfan-Morales CN, Cordero-Rivera CD, Reyes-Ruiz JM, Hurtado-Monzón AM, Osuna-Ramos JF et al. Anti-flavivirus properties of lipid-lowering drugs. Front Physiol 2021; 12:749770 [View Article] [PubMed]
    [Google Scholar]
  181. Bader T, Korba B. Simvastatin potentiates the anti-hepatitis B virus activity of FDA-approved nucleoside analogue inhibitors in vitro. Antiviral Res 2010; 86:241–245 [View Article] [PubMed]
    [Google Scholar]
  182. Delang L, Paeshuyse J, Vliegen I, Leyssen P, Obeid S et al. Statins potentiate the in vitro anti-hepatitis C virus activity of selective hepatitis C virus inhibitors and delay or prevent resistance development. Hepatology 2009; 50:6–16 [View Article] [PubMed]
    [Google Scholar]
  183. Getz KR, Bellile E, Zarins KR, Rullman C, Chinn SB et al. Statin use and head and neck squamous cell carcinoma outcomes. Int J Cancer 2020 [View Article] [PubMed]
    [Google Scholar]
  184. Santarelli R, Pompili C, Gilardini Montani MS, Romeo MA, Gonnella R et al. Lovastatin reduces PEL cell survival by phosphorylating ERK1/2 that blocks the autophagic flux and engages a cross-talk with p53 to activate p21. IUBMB Life 2021; 73:968–977 [View Article] [PubMed]
    [Google Scholar]
  185. Bolotin E, Armendariz A, Kim K, Heo S-J, Boffelli D et al. Statin-induced changes in gene expression in EBV-transformed and native B-cells. Hum Mol Genet 2014; 23:1202–1210 [View Article] [PubMed]
    [Google Scholar]
  186. Hyrina A, Burdette D, Song Z, Ramirez R, Okesli-Armlovich A et al. Targeting lipid biosynthesis pathways for hepatitis B virus cure. PLoS One 2022; 17:e0270273 [View Article] [PubMed]
    [Google Scholar]
  187. Thyrsted J, Holm CK. Virus-induced metabolic reprogramming and innate sensing hereof by the infected host. Curr Opin Biotechnol 2021; 68:44–50 [View Article] [PubMed]
    [Google Scholar]
  188. Thaker SK, Ch’ng J, Christofk HR. Viral hijacking of cellular metabolism. BMC Biol 2019; 17:59 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001861
Loading
/content/journal/jgv/10.1099/jgv.0.001861
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error