1887

Abstract

Sand flies (Diptera: Phlebotominae) are proven vectors of various pathogens of medical and veterinary importance. Although mostly known for their pivotal role in the transmission of parasitic protists of the genus that cause leishmaniases, they are also proven or suspected vectors of many arboviruses, some of which threaten human and animal health, causing disorders such as human encephalitis (Chandipura virus) or serious diseases of domestic animals (vesicular stomatitis viruses). We reviewed the literature to summarize the current published information on viruses detected in or isolated from phlebotomine sand flies, excluding the family with the genus , as these have been well investigated and up-to-date reviews are available. Sand fly-borne viruses from four other families (, , and ) and one unclassified group () are reviewed for the first time regarding their distribution in nature, host and vector specificity, and potential natural transmission cycles.

Funding
This study was supported by the:
  • Ministerstvo Školství, Mládeže a Tělovýchovy (Award LX22NPO5103)
    • Principle Award Recipient: ApplicableNot
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001837
2023-04-05
2024-05-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/104/4/jgv001837.html?itemId=/content/journal/jgv/10.1099/jgv.0.001837&mimeType=html&fmt=ahah

References

  1. Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol 2013; 27:123–147 [View Article] [PubMed]
    [Google Scholar]
  2. Cecílio P, Cordeiro-da-Silva A, Oliveira F. Sand flies: basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Commun Biol 2022; 5:305 [View Article] [PubMed]
    [Google Scholar]
  3. Feliciangeli MD. Natural breeding places of phlebotomine sandflies. Med Vet Entomol 2004; 18:71–80 [View Article] [PubMed]
    [Google Scholar]
  4. Dvorak V, Shaw J, Volf P. Parasite biology: the vectors. In Bruschi F, Gradoni L. eds The Leishmaniases: Old Neglected Tropical Diseases Cham: Springer International Publishing; 2018 pp 31–77
    [Google Scholar]
  5. Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P et al. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis 2016; 10:e0004349 [View Article] [PubMed]
    [Google Scholar]
  6. Maia C, Depaquit J. Can Sergentomyia (Diptera, Psychodidae) play a role in the transmission of mammal-infecting Leishmania?. Parasite 2016; 23:55 [View Article] [PubMed]
    [Google Scholar]
  7. Ramalho-Ortigão JM, Kamhawi S, Joshi MB, Reynoso D, Lawyer PG et al. Characterization of a blood activated chitinolytic system in the midgut of the sand fly vectors Lutzomyia longipalpis and Phlebotomus papatasi. Insect Mol Biol 2005; 14:703–712 [View Article] [PubMed]
    [Google Scholar]
  8. Sádlová J, Volf P. Peritrophic matrix of Phlebotomus duboscqi and its kinetics during Leishmania major development. Cell Tissue Res 2009; 337:313–325 [View Article] [PubMed]
    [Google Scholar]
  9. Pruzinova K, Sadlova J, Seblova V, Homola M, Votypka J et al. Comparison of bloodmeal digestion and the peritrophic matrix in four sand fly species differing in susceptibility to Leishmania donovani. PLoS One 2015; 10:e0128203 [View Article] [PubMed]
    [Google Scholar]
  10. Abdeladhim M, Kamhawi S, Valenzuela JG. What’s behind a sand fly bite? The profound effect of sand fly saliva on host hemostasis, inflammation and immunity. Infect Genet Evol 2014; 28:691–703 [View Article] [PubMed]
    [Google Scholar]
  11. Lestinova T, Rohousova I, Sima M, de Oliveira CI, Volf P. Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl Trop Dis 2017; 11:e0005600 [View Article] [PubMed]
    [Google Scholar]
  12. Belkaid Y, Kamhawi S, Modi G, Valenzuela J, Noben-Trauth N et al. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med 1998; 188:1941–1953 [View Article] [PubMed]
    [Google Scholar]
  13. Kamhawi S, Belkaid Y, Modi G, Rowton E, Sacks D. Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science 2000; 290:1351–1354 [View Article] [PubMed]
    [Google Scholar]
  14. World Health Organization Arboviruses and human disease: report of a WHO scientific group [meeting held in Geneva from 26 September to 1 October 1966]. World Health Organization; 1967
  15. Charrel RN, Gallian P, Navarro-Mari J-M, Nicoletti L, Papa A et al. Emergence of toscana virus in Europe. Emerg Infect Dis 2005; 11:1657–1663 [View Article] [PubMed]
    [Google Scholar]
  16. Depaquit J, Grandadam M, Fouque F, Andry PE, Peyrefitte C. Arthropod-borne viruses transmitted by Phlebotomine sandflies in Europe: a review. Euro Surveill 2010; 15:19507 [View Article] [PubMed]
    [Google Scholar]
  17. Moriconi M, Rugna G, Calzolari M, Bellini R, Albieri A et al. Phlebotomine sand fly-borne pathogens in the Mediterranean Basin: human leishmaniasis and phlebovirus infections. PLoS Negl Trop Dis 2017; 11:e0005660 [View Article] [PubMed]
    [Google Scholar]
  18. Ergunay K, Ayhan N, Charrel RN. Novel and emergent sandfly-borne phleboviruses in Asia Minor: a systematic review. Rev Med Virol 2017; 27:e1898 [View Article] [PubMed]
    [Google Scholar]
  19. Ayhan N, Charrel RN. An update on Toscana virus distribution, genetics, medical and diagnostic aspects. Clin Microbiol Infect 2020; 26:1017–1023 [View Article] [PubMed]
    [Google Scholar]
  20. Kuhn JH, Adkins S, Agwanda BR, Al Kubrusli R, Alkhovsky SV et al. Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Arch Virol 2021; 166:3513–3566 [View Article] [PubMed]
    [Google Scholar]
  21. ICTV ICTV-taxonomy. International Committee on Taxonomy of Viruses (ICTV); 2022 https://ictv.global/taxonomy
  22. Walker PJ, Freitas-Astúa J, Bejerman N, Blasdell KR, Breyta R et al. ICTV Virus Taxonomy Profile: Rhabdoviridae 2022. J Gen Virol 2022; 103:001689 [View Article] [PubMed]
    [Google Scholar]
  23. Kuzmin IV, Novella IS, Dietzgen RG, Padhi A, Rupprecht CE. The rhabdoviruses: biodiversity, phylogenetics, and evolution. Infect Genet Evol 2009; 9:541–553 [View Article] [PubMed]
    [Google Scholar]
  24. Walker PJ, Firth C, Widen SG, Blasdell KR, Guzman H et al. Evolution of genome size and complexity in the rhabdoviridae. PLoS Pathog 2015; 11:e1004664 [View Article] [PubMed]
    [Google Scholar]
  25. Letchworth GJ, Rodriguez LL, Del cbarrera J. Vesicular stomatitis. Vet J 1999; 157:239–260 [View Article] [PubMed]
    [Google Scholar]
  26. Tesh RB, Boshell J, Modi GB, Morales A, Young DG et al. Natural infection of humans, animals, and phlebotomine sand flies with the Alagoas serotype of vesicular stomatitis virus in Colombia. Am J Trop Med Hyg 1987; 36:653–661 [View Article] [PubMed]
    [Google Scholar]
  27. Hanson RP, Brandly CA. Epizootiology of vesicular stomatitis. Am J Public Health Nations Health 1957; 47:205–209 [View Article] [PubMed]
    [Google Scholar]
  28. Trainer DO, Glazener WC, Hanson RP, Nassif BD. Infectious disease exposure in a wild turkey population. Avian Dis 1968; 12:208–214 [View Article] [PubMed]
    [Google Scholar]
  29. Srihongse S. Vesicular stomatitis virus infections in Panamanian primates and other vertebrates. Am J Epidemiol 1969; 90:69–76 [View Article] [PubMed]
    [Google Scholar]
  30. Fletcher WO, Stallknecht DE, Jenney EW. Serologic surveillance for vesicular stomatitis virus on Ossabaw Island, Georgia. J Wildl Dis 1985; 21:100–104 [View Article] [PubMed]
    [Google Scholar]
  31. Corn JL, Lee RM, Erickson GA, Murphy CD. Serologic survey for evidence of exposure to vesicular stomatitis virus, pseudorabies virus, brucellosis and leptospirosis in collared peccaries from Arizona. J Wildl Dis 1987; 23:551–557 [View Article] [PubMed]
    [Google Scholar]
  32. Webb PA, McLean RG, Smith GC, Ellenberger JH, Francy DB et al. Epizootic vesicular stomatitis in Colorado, 1982: some observations on the possible role of wildlife populations in an enzootic maintenance cycle. J Wildl Dis 1987; 23:192–198 [View Article] [PubMed]
    [Google Scholar]
  33. Hanson RP. The natural history of vesicular stomatitis. Bacteriol Rev 1952; 16:179–204 [View Article] [PubMed]
    [Google Scholar]
  34. Leder RR, Maas J, Lane VM, Evermann JF. Epidemiologic investigation of vesicular stomatitis in a dairy and its economic impact. Bov pract 1983; 18:45–49 [View Article]
    [Google Scholar]
  35. Reis JLJ, Mead D, Rodriguez LL, Brown CC. Transmission and pathogenesis of vesicular stomatitis viruses. Braz J Vet Pathol 2009; 2:49–58
    [Google Scholar]
  36. Rozo-Lopez P, Drolet BS, Londoño-Renteria B. Vesicular stomatitis virus transmission: a comparison of incriminated vectors. Insects 2018; 9:1–16 [View Article] [PubMed]
    [Google Scholar]
  37. Patterson WC, Jenney EW, Holbrook AA. Experimental infections with vesicular stomatitis in swine. I. Transmission by direct contact and feeding infected meat scraps. US Livest Sanit Assoc Proc 1955; 59:368–378
    [Google Scholar]
  38. Quiroz E, Moreno N, Peralta PH, Tesh RB. A human case of encephalitis associated with vesicular stomatitis virus (Indiana serotype) infection. Am J Trop Med Hyg 1988; 39:312–314 [View Article] [PubMed]
    [Google Scholar]
  39. Comer JA, Corn JL, Stallknecht DE, Landgraf JG, Nettles VF. Titers of vesicular stomatitis virus, New Jersey serotype, in naturally infected male and female Lutzomyia shannoni (Diptera: Psychodidae) in Georgia. J Med Entomol 1992; 29:368–370 [View Article] [PubMed]
    [Google Scholar]
  40. Corn JL, Comer JA, Erickson GA, Nettles VF. Isolation of vesicular stomatitis virus New Jersey serotype from phlebotomine sand flies in Georgia. Am J Trop Med Hyg 1990; 42:476–482 [View Article] [PubMed]
    [Google Scholar]
  41. Shelokov A, Peralta PH. Vesicular stomatitis virus, Indiana type: an arbovirus infection of tropical sandflies and humans?. Am J Epidemiol 1967; 86:149–157 [View Article] [PubMed]
    [Google Scholar]
  42. Galindo P, Srihongse S, De Rodaniche E, Grayson MA, Galindo P. An ecological survey for arboviruses in Almirante, Panama, 1959-1962. Am J Trop Med Hyg 1966; 15:385–400 [View Article] [PubMed]
    [Google Scholar]
  43. Tesh RB, Chaniotis BN, Peralta PH, Johnson KM. Ecology of viruses isolated from panamanian phlebotomine sandflies. Am J Trop Med Hyg 1974; 23:258–269 [View Article] [PubMed]
    [Google Scholar]
  44. Tesh RB, Chaniotis BN, Johnson KM. Vesicular stomatitis virus (Indiana serotype): transovarial transmission by phlebotomine sandlies. Science 1972; 175:1477–1479 [View Article] [PubMed]
    [Google Scholar]
  45. Comer JA, Tesh RB, Modi GB, Corn JL, Nettles VF. Vesicular stomatitis virus, New Jersey serotype: replication in and transmission by Lutzomyia shannoni (Diptera: Psychodidae). Am J Trop Med Hyg 1990; 42:483–490 [View Article] [PubMed]
    [Google Scholar]
  46. Rozo-Lopez P, Londono-Renteria B, Drolet BS. Venereal transmission of vesicular stomatitis virus by Culicoides sonorensis midges. Pathogens 2020; 9:1–17 [View Article] [PubMed]
    [Google Scholar]
  47. Franz AWE, Kantor AM, Passarelli AL, Clem RJ. Tissue barriers to arbovirus infection in mosquitoes. Viruses 2015; 7:3741–3767 [View Article] [PubMed]
    [Google Scholar]
  48. Tesh RB, Chaniotis BN, Johnson KM. Vesicular stomatitis virus, Indiana serotype: multiplication in and transmission by experimentally infected phlebotomine sandflies (Lutzomyia trapidoi). Am J Epidemiol 1971; 93:491–495 [View Article] [PubMed]
    [Google Scholar]
  49. Weaver SC, Tesh RB, Guzman H. Ultrastructural aspects of replication of the New Jersey serotype of vesicular stomatitis virus in a suspected sand fly vector, Lutzomyia shannoni (Diptera: Psychodidae). Am J Trop Med Hyg 1992; 46:201–210 [View Article] [PubMed]
    [Google Scholar]
  50. Tesh RB, Peralta PH, Johnson KM. Ecologic studies of vesicular stomatitis virus. II. Results of experimental infection in panamanian wild animals. Am J Epidemiol 1970; 91:216–224 [View Article] [PubMed]
    [Google Scholar]
  51. Stallknecht DE, Kavanaugh DM, Corn JL, Eernisse KA, Comer JA et al. Feral swine as a potential amplifying host for vesicular stomatitis virus New Jersey serotype on Ossabaw Island, Georgia. J Wildl Dis 1993; 29:377–383 [View Article] [PubMed]
    [Google Scholar]
  52. Stallknecht DE, Howerth EW, Reeves CL, Seal BS. Potential for contact and mechanical vector transmission of vesicular stomatitis virus New Jersey in pigs. Am J Vet Res 1999; 60:43–48 [PubMed]
    [Google Scholar]
  53. Howerth EW, Mead DG, Mueller PO, Duncan L, Murphy MD et al. Experimental vesicular stomatitis virus infection in horses: effect of route of inoculation and virus serotype. Vet Pathol 2006; 43:943–955 [View Article] [PubMed]
    [Google Scholar]
  54. Mesquita LP, Diaz MH, Howerth EW, Stallknecht DE, Noblet R et al. Pathogenesis of vesicular stomatitis New Jersey virus infection in deer mice (Peromyscus maniculatus) transmitted by black flies (Simulium vittatum). Vet Pathol 2017; 54:74–81 [View Article] [PubMed]
    [Google Scholar]
  55. Comer JA, Irby WS, Kavanaugh DM. Hosts of Lutzomyia shannoni (Diptera: Psychodidae) in relation to vesicular stomatitis virus on Ossabaw Island, Georgia, U.S.A. Med Vet Entomol 1994; 8:325–330 [View Article] [PubMed]
    [Google Scholar]
  56. Fletcher WO, Stallknecht DE, Kearney MT, Eernisse KA. Antibodies to vesicular stomatitis New Jersey type virus in white-tailed deer on Ossabaw Island, Georgia, 1985 to 1989. J Wildl Dis 1991; 27:675–680 [View Article] [PubMed]
    [Google Scholar]
  57. Comer JA, Stallknecht DE, Nettles VF. Incompetence of white-tailed deer as amplifying hosts of vesicular stomatitis virus for Lutzomyia shannoni (Diptera: Psychodidae). J Med Entomol 1995; 32:738–740 [View Article] [PubMed]
    [Google Scholar]
  58. Comer JA, Stallknecht DE, Nettles VF. Incompetence of domestic pigs as amplifying hosts of vesicular stomatitis virus for Lutzomyia shannoni (Diptera: Psychodidae). J Med Entomol 1995; 32:741–744 [View Article] [PubMed]
    [Google Scholar]
  59. Mead DG, Ramberg FB, Besselsen DG, Maré CJ. Transmission of vesicular stomatitis virus from infected to noninfected black flies co-feeding on nonviremic deer mice. Science 2000; 287:485–487 [View Article] [PubMed]
    [Google Scholar]
  60. Rao BL, Basu A, Wairagkar NS, Gore MM, Arankalle VA et al. A large outbreak of acute encephalitis with high fatality rate in children in Andhra Pradesh, India, in 2003, associated with Chandipura virus. Lancet 2004; 364:869–874 [View Article] [PubMed]
    [Google Scholar]
  61. Rajasekharan S, Rana J, Gulati S, Gupta V, Gupta S. Neuroinvasion by Chandipura virus. Acta Trop 2014; 135:122–126 [View Article] [PubMed]
    [Google Scholar]
  62. Ghosh S, Basu A. Neuropathogenesis by Chandipura virus: an acute encephalitis syndrome in India. Natl Med J India 2017; 30:21–25 [PubMed]
    [Google Scholar]
  63. Kemp GE, Causey OR, Setzer HW, Moore DL. Isolation of viruses from wild mammals in West Africa, 1966-1970. J Wildl Dis 1974; 10:279–293 [View Article] [PubMed]
    [Google Scholar]
  64. Fontenille D, Traore-Lamizana M, Trouillet J, Leclerc A, Mondo M et al. First isolations of arboviruses from phlebotomine sand flies in West Africa. Am J Trop Med Hyg 1994; 50:570–574 [View Article] [PubMed]
    [Google Scholar]
  65. Traoré-Lamizana M, Fontenille D, Diallo M, Y, Zeller HG et al. Arbovirus surveillance from 1990 to 1995 in the Barkedji area (Ferlo) of Senegal, a possible natural focus of Rift Valley fever virus. J Med Entomol 2001; 38:480–492 [View Article] [PubMed]
    [Google Scholar]
  66. Peiris JS, Dittus WP, Ratnayake CB. Seroepidemiology of dengue and other arboviruses in a natural population of toque macaques (Macaca sinica) at Polonnaruwa, Sri Lanka. J Med Primatol 1993; 22:240–245 [View Article] [PubMed]
    [Google Scholar]
  67. Gurav YK, Tandale BV, Jadi RS, Gunjikar RS, Tikute SS et al. Chandipura virus encephalitis outbreak among children in Nagpur division, Maharashtra, 2007. Indian J Med Res 2010; 132:395–399 [PubMed]
    [Google Scholar]
  68. Dwibedi B, Sabat J, Hazra RK, Kumar A, Dinesh DS et al. Chandipura virus infection causing encephalitis in a tribal population of Odisha in Eastern India. Natl Med J India 2015; 28:185–187 [PubMed]
    [Google Scholar]
  69. Joshi MV, Patil DR, Tupe CD, Umarani UB, Ayachit VM et al. Incidence of neutralizing antibodies to Chandipura virus in domestic animals from Karimnagar and Warangal Districts of Andhra Pradesh, India. Acta Virol 2005; 49:69–71 [PubMed]
    [Google Scholar]
  70. Wilks CR, House JA. Susceptibility of various animals to the vesiculoviruses Isfahan and Chandipura. J Hyg 1986; 97:359–368 [View Article] [PubMed]
    [Google Scholar]
  71. Geevarghese G, Arankalle VA, Jadi R, Kanojia PC, Joshi MV et al. Detection of chandipura virus from sand flies in the genus Sergentomyia (Diptera: Phlebotomidae) at Karimnagar District, Andhra Pradesh, India. J Med Entomol 2005; 42:495–496 [View Article] [PubMed]
    [Google Scholar]
  72. Dhanda V, Rodrigues FM, Ghosh SN. Isolation of Chandipura virus from sandflies in Aurangabad. Indian J Med Res 1970; 58:179–180 [PubMed]
    [Google Scholar]
  73. Sudeep AB, Bondre VP, Gurav YK, Gokhale MD, Sapkal GN et al. Isolation of Chandipura virus (Vesiculovirus: Rhabdoviridae) from Sergentomyia species of sandflies from Nagpur, Maharashtra, India. Indian J Med Res 2014; 139:769–772 [PubMed]
    [Google Scholar]
  74. Tesh RB, Modi GB. Growth and transovarial transmission of Chandipura virus (Rhabdoviridae: Vesiculovirus) in Phlebotomus papatasi. Am J Trop Med Hyg 1983; 32:621–623 [View Article] [PubMed]
    [Google Scholar]
  75. Mavale MS, Fulmali PV, Geevarghese G, Arankalle VA, Ghodke YS et al. Venereal transmission of Chandipura virus by Phlebotomus papatasi (Scopoli). Am J Trop Med Hyg 2006; 75:1151–1152 [View Article] [PubMed]
    [Google Scholar]
  76. Mavale MS, Fulmali PV, Ghodke YS, Mishra AC, Kanojia P et al. Experimental transmission of Chandipura virus by Phlebotomus argentipes (Diptera: Psychodidae). Am J Trop Med Hyg 2007; 76:307–309 [View Article] [PubMed]
    [Google Scholar]
  77. Rao TR, Singh KR, Dhanda V, Bhatt PN. Experimental transmission of Chandipura virus by mosquitoes. Indian J Med Res 1967; 55:1306–1310 [PubMed]
    [Google Scholar]
  78. Mavale MS, Geevarghese G, Ghodke YS, Fulmali PV, Singh A et al. Vertical and venereal transmission of Chandipura virus (Rhabdoviridae) by Aedes aegypti (Diptera: Culicidae). J Med Entomol 2005; 42:909–911 [View Article] [PubMed]
    [Google Scholar]
  79. Leake C. Comparative studies on the infection of invertebrate and vertebrate cell lines with some arboviruses PhD thesis: London School of Hygiene & Tropical Medicine; 1977
    [Google Scholar]
  80. Tesh RB, Modi GB. Development of a continuous cell line from the sand fly Lutzomyia longipalpis (Diptera: Psychodidae), and its susceptibility to infection with arboviruses. J Med Entomol 1983; 20:199–202 [View Article] [PubMed]
    [Google Scholar]
  81. Jadi RS, Sudeep AB, Kumar S, Arankalle VA, Mishra AC. Chandipura virus growth kinetics in vertebrate cell lines, insect cell lines & embryonated eggs. Indian J Med Res 2010; 132:155–159 [PubMed]
    [Google Scholar]
  82. Mourya DT, Lakra RJ, Yadav PD, Tyagi P, Raut CG et al. Establishment of cell line from embryonic tissue of Pipistrellus ceylonicus bat species from India & its susceptibility to different viruses. Indian J Med Res 2013; 138:224–231 [PubMed]
    [Google Scholar]
  83. Sudeep AB, Parashar D, Jadi RS, Basu A, Mokashi C et al. Establishment and characterization of a new Aedes aegypti (L.) (Diptera: Culicidae) cell line with special emphasis on virus susceptibility. In Vitro Cell Dev Biol Anim 2009; 45:491–495 [View Article] [PubMed]
    [Google Scholar]
  84. Tesh R, Saidi S, Javadian E, Loh P, Nadim A. Isfahan virus, a new vesiculovirus infecting humans, gerbils, and sandflies in Iran. Am J Trop Med Hyg 1977; 26:299–306 [View Article] [PubMed]
    [Google Scholar]
  85. Gaĭdamovich SI, Altukhova LM, Obukhova VR, Ponirovskiĭ EN, Sadykov VG. Isolation of the isfahan virus in Turkmenia. Vopr Virusol 1980; 5:618–620
    [Google Scholar]
  86. Travassos da Rosa AP, Tesh RB, Travassos da Rosa JF, Herve JP, Main AJ Jr. Carajas and Maraba viruses, two new vesiculoviruses isolated from phlebotomine sand flies in Brazil. Am J Trop Med Hyg 1984; 33:999–1006 [View Article] [PubMed]
    [Google Scholar]
  87. Gomes-Leal W, Martins LC, Diniz JAP, Dos Santos ZA, Borges JA et al. Neurotropism and neuropathological effects of selected rhabdoviruses on intranasally-infected newborn mice. Acta Trop 2006; 97:126–139 [View Article] [PubMed]
    [Google Scholar]
  88. Maia-Farias A, Lima CM, Freitas PSL, Diniz DG, Rodrigues APD et al. Early and late neuropathological features of meningoencephalitis associated with Maraba virus infection. Braz J Med Biol Res 2020; 53:e8604 [View Article] [PubMed]
    [Google Scholar]
  89. Gligić A, Tesh RB, Miščević Z, Travassos Da Rosa APA, Živković V. Jug bogdanovac virus - a new member of the vesicular stomatitis virus serogroup (Rhabdoviridae: Vesiculovirus) isolated from phlebotomine sandflies in Yugoslavia. Mikrobiologija 1983; 20:97–105
    [Google Scholar]
  90. Kuhn JH, Adkins S, Alioto D, Alkhovsky SV, Amarasinghe GK et al. 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Arch Virol 2020; 165:3023–3072 [View Article] [PubMed]
    [Google Scholar]
  91. Travassos Da Rosa JFS, Travassos Da Rosa APA, Vasconcelos PFC, Pinheiro FP, Rodrigues SG et al. Arboviruses isolated in the Evandro Chagas Institute, including some described for the first time in the Brazilian Amazon region, their known hosts, and their pathology for man. In Travassos Da APA, Vasconcelos PF, Travassos da Rosa JFS. eds An Overview of Arbovirology in Brazil and Neighbouring Countries Belém, Instituto Edvandro Chagas; 1998 pp 19–31
    [Google Scholar]
  92. CDCARBOCAT Rochambeau CDC ArboCat The International Catalog of Arboviruses Including Certain Other Viruses of Vertebrates - Cat Subcommittee on Information Exchange of the American Committee on Arthropod-Borne Viruses; 2021 https://wwwn.cdc.gov/arbocat/VirusDetails.aspx?ID=400&SID=1
  93. Degallier N. Les arbovirus selvatique en Guyane française et leurs vecteurs Paris: Doctoral Thesis, L’Universite Pierre et Marie Curie; 1982
    [Google Scholar]
  94. Diniz JAP, Nunes MRT, Travassos da Rosa APA, Cruz ACR, de Souza W et al. Characterization of two new rhabdoviruses isolated from midges (Culicoides SPP) in the Brazilian Amazon: proposed members of a new genus, Bracorhabdovirus. Arch Virol 2006; 151:2519–2527 [View Article] [PubMed]
    [Google Scholar]
  95. Diniz JAP, Dos Santos ZA, Braga MAG, Dias ALB, da Silva DEA et al. Early and late pathogenic events of newborn mice encephalitis experimentally induced by Itacaiunas and Curionópolis bracorhabdoviruses infection. PLoS One 2008; 3:e1733 [View Article] [PubMed]
    [Google Scholar]
  96. Walker PJ, Blasdell KR, Calisher CH, Dietzgen RG, Kondo H et al. ICTV virus taxonomy profile: Rhabdoviridae. J Gen Virol 2018; 99:447–448 [View Article] [PubMed]
    [Google Scholar]
  97. Karabatsos N. International catalogue of arboviruses including certain other viruses of vertebrates. 3rd ed. In The American Society of Tropical Medicine and Hygiene for the Subcommittee on Information Exchange of the American Committee on Arthropod-Borne Viruses San Antonio TX: 1985
    [Google Scholar]
  98. Shi M, Lin X-D, Chen X, Tian J-H, Chen L-J et al. The evolutionary history of vertebrate RNA viruses. Nature 2018; 556:197–202 [View Article] [PubMed]
    [Google Scholar]
  99. Doherty RL, Carley JG, Standfast HA, Dyce AL, Kay BH et al. Isolation of arboviruses from mosquitoes, biting midges, sandflies and vertebrates collected in Queensland, 1969 and 1970. Trans R Soc Trop Med Hyg 1973; 67:536–543 [View Article] [PubMed]
    [Google Scholar]
  100. Vasilakis N, Widen S, Mayer SV, Seymour R, Wood TG et al. Niakha virus: a novel member of the family Rhabdoviridae isolated from phlebotomine sandflies in Senegal. Virology 2013; 444:80–89 [View Article] [PubMed]
    [Google Scholar]
  101. Causey OR, Shope RE, Bensabath G. Marco, Timbo, and Chaco, newly recognized arboviruses from lizards of Brazil. Am J Trop Med Hyg 1966; 15:239–243 [View Article] [PubMed]
    [Google Scholar]
  102. McAllister J, Gauci PJ, Mitchell IR, Boyle DB, Bulach DM et al. Genomic characterisation of Almpiwar virus, Harrison Dam virus and Walkabout Creek virus; three novel rhabdoviruses from northern Australia. Virology Reports 2014; 3–4:1–17 [View Article]
    [Google Scholar]
  103. Carley JG, Standfast HA, Kay BH. Multiplication of viruses isolated from arthopods and vertebrates in Australia in experimentally infected mosquitoes. J Med Entomol 1973; 10:244–249 [View Article] [PubMed]
    [Google Scholar]
  104. Standfast HA, Dyce AL, St George TD, Muller MJ, Doherty RL et al. Isolation of arboviruses from insects collected at Beatrice Hill, Northern Territory of Australia, 1974-1976. Aust J Biol Sci 1984; 37:351–366 [View Article] [PubMed]
    [Google Scholar]
  105. Wanzeller ALM, Martins LC, Diniz Júnior JAP, de Almeida Medeiros DB, Cardoso JF et al. Xiburema virus, a hitherto undescribed virus within the family Rhabdoviridae isolated in the Brazilian amazon region. Genome Announc 2014; 2:2011–2012 [View Article] [PubMed]
    [Google Scholar]
  106. Wanzeller ALM, Nunes MRT, Tavares FN, Pinto WVM, Júnior EC et al. Inhangapi virus: genome sequencing of a Brazilian ungrouped Rhabdovirus isolated in the amazon region. Genome Announc 2016; 4:4–5 [View Article] [PubMed]
    [Google Scholar]
  107. Aitken THG, Woodall JP, De Andrade AHP, Bensabath G, Shope RE. Pacui virus, phlebotomine flies, and small mammals in Brazil: an epidemiological study. Am J Trop Med Hyg 1975; 24:358–368 [View Article] [PubMed]
    [Google Scholar]
  108. Spence L, Anderson CR, Aitken THG, Downs WG. Aruac virus, a new agent isolated from Trinidadian mosquitoes. Am J Trop Med Hyg 1966; 15:231–234 [View Article] [PubMed]
    [Google Scholar]
  109. Simmonds P, Becher P, Bukh J, Gould EA, Meyers G et al. ICTV virus taxonomy profile: Flaviviridae. J Gen Virol 2017; 98:2–3 [View Article] [PubMed]
    [Google Scholar]
  110. Blitvich BJ, Firth AE. Insect-specific flaviviruses: a systematic review of their discovery, host range, mode of transmission, superinfection exclusion potential and genomic organization. Viruses 2015; 7:1927–1959 [View Article] [PubMed]
    [Google Scholar]
  111. Butenko AM. Arbovirus circulation in the Republic of Guinea. Med Parazitol 1996; 2:40–45
    [Google Scholar]
  112. Konstantinov OK, Diallo SM, Inapogi AP, Ba A, Kamara SK. The mammals of Guinea as reservoirs and carriers of arboviruses. Med Parazitol 2006; 1:34–39
    [Google Scholar]
  113. CDCARBOCAT Saboya CDC ArboCat The International Catalog of Arboviruses Including Certain Other Viruses of Vertebrates - Cat Subcommittee on Information Exchange of the American Committee on Arthropod-Borne Viruses; 2022 https://wwwn.cdc.gov/arbocat/VirusDetails.aspx?ID=406&SID=1
  114. Alkan C, Zapata S, Bichaud L, Moureau G, Lemey P et al. Ecuador paraiso escondido virus, a new flavivirus isolated from new world sand flies in Ecuador, Is the first representative of a novel clade in the genus Flavivirus. J Virol 2015; 89:11773–11785 [View Article] [PubMed]
    [Google Scholar]
  115. Nouri S, Matsumura EE, Kuo YW, Falk BW. Insect-specific viruses: from discovery to potential translational applications. Curr Opin Virol 2018; 33:33–41 [View Article] [PubMed]
    [Google Scholar]
  116. Hobson-Peters J, Yam AWY, Lu JWF, Setoh YX, May FJ et al. A new insect-specific flavivirus from northern Australia suppresses replication of West Nile virus and Murray Valley encephalitis virus in co-infected mosquito cells. PLoS One 2013; 8:e56534 [View Article] [PubMed]
    [Google Scholar]
  117. Kenney JL, Solberg OD, Langevin SA, Brault AC. Characterization of a novel insect-specific flavivirus from Brazil: potential for inhibition of infection of arthropod cells with medically important flaviviruses. J Gen Virol 2014; 95:2796–2808 [View Article] [PubMed]
    [Google Scholar]
  118. Goenaga S, Kenney JL, Duggal NK, Delorey M, Ebel GD et al. Potential for co-infection of a mosquito-specific flavivirus, Nhumirim virus, to block west Nile virus transmission in mosquitoes. Viruses 2015; 7:5801–5812 [View Article] [PubMed]
    [Google Scholar]
  119. Goenaga S, Goenaga J, Boaglio ER, Enria DA, Levis SDC. Superinfection exclusion studies using West Nile virus and Culex flavivirus strains from Argentina. Mem Inst Oswaldo Cruz 2020; 115:e200012 [View Article] [PubMed]
    [Google Scholar]
  120. Romo H, Kenney JL, Blitvich BJ, Brault AC. Restriction of Zika virus infection and transmission in Aedes aegypti mediated by an insect-specific flavivirus. Emerg Microbes Infect 2018; 7:181 [View Article] [PubMed]
    [Google Scholar]
  121. Baidaliuk A, Miot EF, Lequime S, Moltini-Conclois I, Delaigue F et al. Cell-fusing agent virus reduces arbovirus dissemination in Aedes aegypti mosquitoes in vivo. J Virol 2019; 93:e00705-19 [View Article] [PubMed]
    [Google Scholar]
  122. Mourya DT, Lakra RJ, Yadav PD, Tyagi P, Raut CG et al. Establishment of cell line from embryonic tissue of Pipistrellus ceylonicus bat species from India & its susceptibility to different viruses. Indian J Med Res 2013; 138:224–231 [PubMed]
    [Google Scholar]
  123. Hukić M, Avdihodžić H, Kurolt I-C, Markotić A, Hanjalić J et al. A novel flavivirus strain detected in phlebotomine sandflies in Bosnia and Herzegovina. Med Glas 2020; 17:301–307 [View Article] [PubMed]
    [Google Scholar]
  124. Sánchez-Seco M-P, Vázquez A, Collao X, Hernández L, Aranda C et al. Surveillance of arboviruses in Spanish wetlands: detection of new flavi- and phleboviruses. Vector Borne Zoonotic Dis 2010; 10:203–206 [View Article] [PubMed]
    [Google Scholar]
  125. Carvalho VL, Long MT. Insect-specific viruses: an overview and their relationship to arboviruses of concern to humans and animals. Virology 2021; 557:34–43 [View Article] [PubMed]
    [Google Scholar]
  126. Gould AR, Hyatt AD. The orbivirus genus. Diversity, structure, replication and phylogenetic relationships. Comp Immunol Microbiol Infect Dis 1994; 17:163–188 [View Article] [PubMed]
    [Google Scholar]
  127. Belhouchet M, Mohd Jaafar F, Tesh R, Grimes J, Maan S et al. Complete sequence of Great Island virus and comparison with the T2 and outer-capsid proteins of Kemerovo, Lipovnik and Tribec viruses (genus Orbivirus, family Reoviridae). J Gen Virol 2010; 91:2985–2993 [View Article] [PubMed]
    [Google Scholar]
  128. Belhouchet M, Mohd Jaafar F, Firth AE, Grimes JM, Mertens PPC et al. Detection of a fourth orbivirus non-structural protein. PLoS One 2011; 6:e25697 [View Article] [PubMed]
    [Google Scholar]
  129. Mohd Jaafar F, Belhouchet M, Belaganahalli M, Tesh RB, Mertens PPC et al. Full-genome characterisation of Orungo, Lebombo and Changuinola viruses provides evidence for co-evolution of orbiviruses with their arthropod vectors. PLoS One 2014; 9:e86392 [View Article] [PubMed]
    [Google Scholar]
  130. Attoui H, Mohd Jaafar F. Zoonotic and emerging orbivirus infections. OIE Rev Sci Tech 2015; 34:353–361 [View Article]
    [Google Scholar]
  131. Silva SP, Dilcher M, Weber F, Hufert FT, Weidmann M et al. Genetic and biological characterization of selected Changuinola viruses (Reoviridae, Orbivirus) from Brazil. J Gen Virol 2014; 95:2251–2259 [View Article] [PubMed]
    [Google Scholar]
  132. Matthijnssens J, Attoui H, Bányai K, Brussaard CPD, Danthi P et al. ICTV virus taxonomy profile: Sedoreoviridae 2022. J Gen Virol 2022; 103:001782 [View Article] [PubMed]
    [Google Scholar]
  133. Travassos da Rosa AP, Tesh RB, Pinheiro FP, Travassos da Rosa JF, Peralta PH et al. Characterization of the Changuinola serogroup viruses (Reoviridae: Orbivirus). Intervirology 1984; 21:38–49 [View Article] [PubMed]
    [Google Scholar]
  134. Medlin S, Deardorff ER, Hanley CS, Vergneau-Grosset C, Siudak-Campfield A et al. Serosurvey of selected arboviral pathogens in free-ranging, two-toed sloths (Choloepus hoffmanni) and three-toed sloths (Bradypus variegatus) in Costa Rica, 2005–07. J Wildl Dis 2016; 52:883–892 [View Article] [PubMed]
    [Google Scholar]
  135. Phumee A, Wacharapluesadee S, Petcharat S, Tawatsin A, Thavara U et al. Detection of Changuinola virus (Reoviridae: Orbivirus) in field-caught sand flies in southern Thailand. Trans R Soc Trop Med Hyg 2021; 115:1039–1044 [View Article] [PubMed]
    [Google Scholar]
  136. Peralta PH, Shelokov A. Isolation and characterization of arboviruses from Almirante, Republic of Panama. Am J Trop Med Hyg 1966; 15:369–378 [View Article] [PubMed]
    [Google Scholar]
  137. Seymour C, Peralta PH, Montgomery GG. Viruses isolated from Panamanian sloths. Am J Trop Med Hyg 1983; 32:1435–1444 [View Article] [PubMed]
    [Google Scholar]
  138. Christensen HA, Arias JR, de Vasquez AM, de Freitas RA. Hosts of sandfly vectors of Leishmania braziliensis guyanensis in the central Amazon of Brazil. Am J Trop Med Hyg 1982; 31:239–242 [View Article] [PubMed]
    [Google Scholar]
  139. Nery L da R, Lorosa NES, Franco AMR. Feeding preference of the sand flies Lutzomyia umbratilis and L. spathotrichia (diptera: Psychodidae, Phlebotominae) in an urban forest patch in the city of Manaus, Amazonas, Brazil. Mem Inst Oswaldo Cruz 2004; 99:571–574 [View Article] [PubMed]
    [Google Scholar]
  140. Phan T, Tesh RB, Guzman H, Delwart E. Genomic characterization of Changuinola viruses from Panama: evidence for multiple genome segment reassortment. Virus Genes 2020; 56:527–530 [View Article] [PubMed]
    [Google Scholar]
  141. Silva SP, Dilcher M, Weidmann M, Carvalho VL, Casseb AR et al. Changuinola virus serogroup, new genomes within the genus Orbivirus (family Reoviridae) isolated in the Brazilian Amazon Region. Genome Announc 2013; 1:e00940-13 [View Article] [PubMed]
    [Google Scholar]
  142. Eshita Y, Ericson B, Romanowski V, Bishop DH. Analyses of the mRNA transcription processes of snowshoe hare bunyavirus S and M RNA species. J Virol 1985; 55:681–689 [View Article] [PubMed]
    [Google Scholar]
  143. Martin ML, Lindsey-Regnery H, Sasso DR, McCormick JB, Palmer E. Distinction between Bunyaviridae genera by surface structure and comparison with Hantaan virus using negative stain electron microscopy. Arch Virol 1985; 86:17–28 [View Article] [PubMed]
    [Google Scholar]
  144. Hughes HR, Adkins S, Alkhovskiy S, Beer M, Blair C et al. ICTV virus taxonomy profile: Peribunyaviridae. J Genl Virol 2020; 101:1–2 [View Article]
    [Google Scholar]
  145. Rodrigues DSG, Medeiros D de A, Rodrigues SG, Martins LC, de Lima CPS et al. Pacui Virus, Rio Preto da Eva Virus, and Tapirape Virus, three distinct viruses within the family Bunyaviridae. Genome Announc 2014; 2:1–2 [View Article] [PubMed]
    [Google Scholar]
  146. Jonkers AH, Spence L, Downs WG, Aitken THG, Tikasingh ES. Arbovirus studies in bush bush forest, Trinidad, W. I., September 1959–December 1964 V. virus isolations. Am J Trop Med Hyg 1968; 17:276–284 [View Article] [PubMed]
    [Google Scholar]
  147. Hughes HR, Russell BJ, Lambert AJ. Genetic characterization of Frijoles and Chilibre species complex viruses (genus Phlebovirus; family Phenuiviridae) and three unclassified new world phleboviruses. Am J Trop Med Hyg 2020; 102:359–365 [View Article] [PubMed]
    [Google Scholar]
  148. Woodall JP. Virus research in Amazonia. In Atas Do Simpósio Sobre a Biota Amazônica (Patologia) vol 6 1967 pp 31–63
    [Google Scholar]
  149. Tesh RB, Peralta PH, Shope RE, Chaniotis BN, Johnson KM. Antigenic relationships among phlebotomus fever group arboviruses and their implication for the epidemiology of sandfly fever. Am J Trop Med Hyg 1975; 24:135–144 [View Article] [PubMed]
    [Google Scholar]
  150. Kapuscinski ML, Bergren NA, Russell BJ, Lee JS, Borland EM et al. Genomic characterization of 99 viruses from the bunyavirus families Nairoviridae, Peribunyaviridae, and Phenuiviridae, including 35 previously unsequenced viruses. PLoS Pathog 2021; 17:e1009315 [View Article] [PubMed]
    [Google Scholar]
  151. CDCARBOCAT Santarem CDC ArboCat The International Catalog of Arboviruses Including Certain Other Viruses of Vertebrates - Cat Subcommittee on Information Exchange of the American Committee on Arthropod-Borne Viruses; 2021 https://wwwn.cdc.gov/arbocat/VirusDetails.aspx?ID=422&SID=1
  152. Causey OR, Causey CE, Maroja OM, Macedo DG. The isolation of arthropod-borne viruses, including members of two hitherto undescribed serological groups, in the Amazon region of Brazil. Am J Trop Med Hyg 1961; 10:227–249 [View Article] [PubMed]
    [Google Scholar]
  153. Vasconcelos PF, Travassos Da Rosa APA, Pinheiro FP, Shope RE, Travassos Da Rosa JFS et al. Arboviruses pathogenic for man in Brazil. In Travassos Da Rosa APA, Vasconcelos PF, Travassos Da Rosa JFS. An Overview of Arbovirology in Brazil and Neighbouring Countries, Belém, Instituto Edvandro Chagas 1998 pp 71–99
    [Google Scholar]
  154. CDCARBOCAT Santarem CDC ArboCat The International Catalog of Arboviruses Including Certain Other Viruses of Vertebrates - Cat Subcommittee on Information Exchange of the American Committee on Arthropod-Borne Viruses; 2021 https://wwwn.cdc.gov/arbocat/VirusDetails.aspx?ID=169&SID=5
  155. Calisher CH, Coimbra TL, Lopez O de S, Muth DJ, Sacchetta L de A et al. Identification of new Guama and Group C serogroup bunyaviruses and an ungrouped virus from Southern Brazil. Am J Trop Med Hyg 1983; 32:424–431 [View Article] [PubMed]
    [Google Scholar]
  156. Vasconcelos PF, Degallier N, Pinheiro F. Clinical and ecoepidemiological situation of human arboviruses in Brazilian Amazonia. J Braz Soc 1992; 44:117–124
    [Google Scholar]
  157. Matos GC, Ferreira MS, Martins Filho AJ, Amador Neto OP, Campos VM et al. Experimental infection of golden hamsters with Guama virus (Peribunyaviridae, Orthobunyavirus). Microb Pathog 2019; 135:103627 [View Article] [PubMed]
    [Google Scholar]
  158. Nunes MA, de Oliveira CAL, de Oliveira ML, Kitajima EW, Hilf ME et al. Transmission of Citrus leprosis virus C by Brevipalpus phoenicis (Geijskes) to alternative host plants found in citrus orchards. Plant Dis 2012; 96:968–972 [View Article] [PubMed]
    [Google Scholar]
  159. Nunes MRT, Contreras-Gutierrez MA, Guzman H, Martins LC, Barbirato MF et al. Genetic characterization, molecular epidemiology, and phylogenetic relationships of insect-specific viruses in the taxon Negevirus. Virology 2017; 504:152–167 [View Article] [PubMed]
    [Google Scholar]
  160. Vasilakis N, Forrester NL, Palacios G, Nasar F, Savji N et al. Negevirus: a proposed new taxon of insect-specific viruses with wide geographic distribution. J Virol 2013; 87:2475–2488 [View Article] [PubMed]
    [Google Scholar]
  161. Carapeta S, do Bem B, McGuinness J, Esteves A, Abecasis A et al. Negeviruses found in multiple species of mosquitoes from southern Portugal: Isolation, genetic diversity, and replication in insect cell culture. Virology 2015; 483:318–328 [View Article] [PubMed]
    [Google Scholar]
  162. O’Brien CA, McLean BJ, Colmant AMG, Harrison JJ, Hall-Mendelin S et al. Discovery and characterisation of Castlerea virus, a new species of Negevirus isolated in Australia. Evol Bioinform Online 2017; 13:1176934317691269 [View Article] [PubMed]
    [Google Scholar]
  163. Adams MJ, Adkins S, Bragard C, Gilmer D, Li D et al. ICTV virus taxonomy profile: Virgaviridae. J Gen Virol 2017; 98:1999–2000 [View Article] [PubMed]
    [Google Scholar]
  164. Zhao L, Mwaliko C, Atoni E, Wang Y, Zhang Y et al. Characterization of a novel tanay virus isolated from Anopheles sinensis mosquitoes in Yunnan, China. Front Microbiol 2019; 10:1963 [View Article] [PubMed]
    [Google Scholar]
  165. Walker PJ, Siddell SG, Lefkowitz EJ, Mushegian AR, Dempsey DM et al. Changes to virus taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2019). Arch Virol 2019; 164:2417–2429 [View Article] [PubMed]
    [Google Scholar]
  166. Kondo H, Fujita M, Hisano H, Hyodo K, Andika IB et al. Virome analysis of aphid populations that infest the barley field: the discovery of two novel groups of Nege/Kita-like viruses and other novel RNA viruses. Front Microbiol 2020; 11:509 [View Article] [PubMed]
    [Google Scholar]
  167. Lenz O, Přibylová J, Fránová J, Koloniuk I. Fragaria vesca-associated virus 1: a new virus related to negeviruses. Arch Virol 2020; 165:1249–1252 [View Article]
    [Google Scholar]
  168. Kallies R, Kopp A, Zirkel F, Estrada A, Gillespie TR et al. Genetic characterization of goutanap virus, a novel virus related to Negeviruses, Cileviruses and Higreviruses. Viruses 2014; 6:4346–4357 [View Article] [PubMed]
    [Google Scholar]
  169. Auguste AJ, Carrington CVF, Forrester NL, Popov VL, Guzman H et al. Characterization of a novel Negevirus and a novel Bunyavirus isolated from Culex (Culex) declarator mosquitoes in Trinidad. J Gen Virol 2014; 95:481–485 [View Article] [PubMed]
    [Google Scholar]
  170. Nabeshima T, Inoue S, Okamoto K, Posadas-Herrera G, Yu F et al. Tanay virus, a new species of virus isolated from mosquitoes in the Philippines. J Gen Virol 2014; 95:1390–1395 [View Article] [PubMed]
    [Google Scholar]
  171. Fujita R, Kuwata R, Kobayashi D, Bertuso AG, Isawa H et al. Bustos virus, a new member of the negevirus group isolated from a Mansonia mosquito in the Philippines. Arch Virol 2017; 162:79–88 [View Article] [PubMed]
    [Google Scholar]
  172. da Silva Ribeiro AC, Martins LC, da Silva SP, de Almeida Medeiros DB, Miranda KKP et al. Negeviruses isolated from mosquitoes in the Brazilian Amazon. Virol J 2022; 19:17 [View Article] [PubMed]
    [Google Scholar]
  173. Meki IK, Huditz H-I, Strunov A, van der Vlugt RAA, Kariithi HM et al. Characterization and tissue tropism of newly identified iflavirus and negeviruses in Glossina morsitans morsitans tsetse flies. Viruses 2021; 13:2472 [View Article] [PubMed]
    [Google Scholar]
  174. Langat SK, Eyase F, Bulimo W, Lutomiah J, Oyola SO et al. Profiling of RNA viruses in biting midges (Ceratopogonidae) and related Diptera from Kenya using metagenomics and metabarcoding analysis. mSphere 2021; 6:e0055121 [View Article] [PubMed]
    [Google Scholar]
  175. Lu G, Ye Z-X, He Y-J, Zhang Y, Wang X et al. Discovery of two novel negeviruses in a dungfly collected from the arctic. Viruses 2020; 12:692 [View Article] [PubMed]
    [Google Scholar]
  176. Qi Y-H, Xu L-Y, Zhai J, Ye Z-X, Lu G et al. Complete genome sequence of a novel nege-like virus in aphids (genus Indomegoura). Virol J 2021; 18:76 [View Article] [PubMed]
    [Google Scholar]
  177. Charles J, Tangudu CS, Hurt SL, Tumescheit C, Firth AE et al. Detection of novel and recognized RNA viruses in mosquitoes from the Yucatan Peninsula of Mexico using metagenomics and characterization of their in vitro host ranges. J Gen Virol 2018; 99:1729–1738 [View Article] [PubMed]
    [Google Scholar]
  178. Kawakami K, Kurnia YW, Fujita R, Ito T, Isawa H et al. Characterization of a novel negevirus isolated from Aedes larvae collected in a subarctic region of Japan. Arch Virol 2016; 161:801–809 [View Article] [PubMed]
    [Google Scholar]
  179. Jancarova M, Bichaud L, Hlavacova J, Priet S, Ayhan N et al. Experimental infection of sand flies by Massilia virus and viral transmission by co-feeding on sugar meal. Viruses 2019; 11:1–15 [View Article] [PubMed]
    [Google Scholar]
  180. Simmons TW, Hutchinson ML. A critical review of all known published records for water mite (Acari: Hydrachnidiae) and mosquito (Diptera: Culicidae) parasitic associations from 1975 to present. J Med Entomol 2016; 53:737–752 [View Article] [PubMed]
    [Google Scholar]
  181. Majidi M, Hajiqanbar H, Saboori A. The second species of Biskratrombium (Trombidiformes: Microtrombidiidae) ectoparasitic on phlebotomine sandflies (Diptera: Psychodidae) from Iran. Parasitol Res 2020; 119:795–803 [View Article] [PubMed]
    [Google Scholar]
  182. Öhlund P, Lundén H, Blomström A-L. Insect-specific virus evolution and potential effects on vector competence. Virus Genes 2019; 55:127–137 [View Article] [PubMed]
    [Google Scholar]
  183. Patterson EI, Kautz TF, Contreras-Gutierrez MA, Guzman H, Tesh RB et al. Negeviruses reduce replication of alphaviruses during coinfection. J Virol 2021; 95:e0043321 [View Article] [PubMed]
    [Google Scholar]
  184. Lawyer P, Killick-Kendrick M, Rowland T, Rowton E, Volf P. Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae). Parasite 2017; 24:42 [View Article]
    [Google Scholar]
  185. Souza NA, Brazil RP, Araki AS. The current status of the Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae) species complex. Mem Inst Oswaldo Cruz 2017; 112:161–174 [View Article] [PubMed]
    [Google Scholar]
  186. González C, Wang O, Strutz SE, González-Salazar C, Sánchez-Cordero V et al. Climate change and risk of leishmaniasis in North America: predictions from ecological niche models of vector and reservoir species. PLoS Negl Trop Dis 2010; 4:e585 [View Article] [PubMed]
    [Google Scholar]
  187. Medlock JM, Hansford KM, Van Bortel W, Zeller H, Alten B. A summary of the evidence for the change in European distribution of phlebotomine sand flies (Diptera: Psychodidae) of public health importance. J Vector Ecol 2014; 39:72–77 [View Article] [PubMed]
    [Google Scholar]
  188. Daoudi M, Outammassine A, Amane M, Hafidi M, Boussaa S et al. Climate change influences on the potential distribution of the sand fly Phlebotomus sergenti, vector of Leishmania tropica in Morocco. Acta Parasitol 2022; 67:858–866 [View Article]
    [Google Scholar]
  189. Carvalho BM, Rangel EF, Ready PD, Vale MM. Ecological niche modelling predicts southward expansion of Lutzomyia (Nyssomyia) flaviscutellata (Diptera: Psychodidae: Phlebotominae), vector of Leishmania (Leishmania) amazonensis in South America, under climate change. PLoS ONE 2015; 10:e0143282 [View Article] [PubMed]
    [Google Scholar]
  190. González C, Paz A, Ferro C. Predicted altitudinal shifts and reduced spatial distribution of Leishmania infantum vector species under climate change scenarios in Colombia. Acta Trop 2014; 129:83–90 [View Article] [PubMed]
    [Google Scholar]
  191. Clerc Y, Rodhain F, Digoutte JP, Tesh R, Heme G et al. Le virus périnet du genre Vesiculovirus (Rhabdoviridae) isolé de culicides à madagasgar. Ann Inst Pasteur Virol 1983; 134:61–71 [View Article]
    [Google Scholar]
  192. Verani P, Nicoletti L, Ciufolini MG, Balducci M. Viruses transmitted by sandflies in Italy. Parassitologia 1991; 33 Suppl:513–518 [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001837
Loading
/content/journal/jgv/10.1099/jgv.0.001837
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error