1887

Abstract

St. Louis encephalitis virus (SLEV) is a mosquito-borne re-emerging flavivirus in Argentina. It is currently necessary to develop specific serological tests that can efficiently discriminate the flaviviruses that circulate in our country. The immunoassays to diagnose SLEV lack specificity because they are based on the detection of structural viral proteins and the human immunoglobulins produced during infection against these proteins cross-react with other flaviviruses. Here, we describe an enzyme-immunoassay designed to detect human IgG antibodies specific to the viral non-structural protein NS5. The results indicate that NS5 is a promising antigen useful to discriminate SLEV from other circulating flaviviruses.

Keyword(s): Flavivirus , NS5 and SLEV diagnosis
Funding
This study was supported by the:
  • Fundación Florencio Fiorini
    • Principle Award Recipient: Néstor Gabriel Iglesias
  • Universidad Nacional de Quilmes
    • Principle Award Recipient: Néstor Gabriel Iglesias
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001359
2019-12-17
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/jgv/101/2/168.html?itemId=/content/journal/jgv/10.1099/jgv.0.001359&mimeType=html&fmt=ahah

References

  1. Reisen WK. Epidemiology of St. Louis encephalitis virus. Adv Virus Res 2003; 61:139–183 [View Article]
    [Google Scholar]
  2. Seijo A, Morales A, Poustis G, Romer Y, Efron E et al. [Outbreak of St. Louis encephalitis in the Metropolitan Buenos Aires Area]. Medicina 2011; 71:211–217
    [Google Scholar]
  3. Morales MA, Fabbri CM, Zunino GE, Kowalewski MM, Luppo VC et al. Detection of the mosquito-borne flaviviruses, West Nile, dengue, Saint Louis encephalitis, Ilheus, Bussuquara, and yellow fever in free-ranging black howlers (Alouatta caraya) of northeastern Argentina. PLoS Negl Trop Dis 2017; 11:e0005351 [View Article]
    [Google Scholar]
  4. Spinsanti LI, Díaz LA, Glatstein N, Arselán S, Morales MA et al. Human outbreak of St. Louis encephalitis detected in Argentina, 2005. J Clin Virol 2008; 42:27–33 [View Article]
    [Google Scholar]
  5. Diaz A, Coffey LL, Burkett-Cadena N, Day JF. Reemergence of St. Louis encephalitis virus in the Americas. Emerg Infect Dis 2018; 24: [View Article]
    [Google Scholar]
  6. Hobson-Peters J. Approaches for the development of rapid serological assays for surveillance and diagnosis of infections caused by zoonotic flaviviruses of the Japanese encephalitis virus serocomplex. Journal of Biomedicine and Biotechnology 2012; 2012:1–15 [View Article]
    [Google Scholar]
  7. Morales MA, Fabbri CM. Estado actual del diagnóstico de dengue, Chikungunya Y Zika Y otros arbovirus en Argentina. Actualizaciones en SIDA E INFECTOLOGÍA 2016; 24:111–117
    [Google Scholar]
  8. Artsob H, Gubler DJ, Enria DA, Morales MA, Pupo M et al. West Nile virus in the new world: trends in the spread and proliferation of West Nile virus in the Western hemisphere. Zoonoses Public Health 2009; 56:357–369 [View Article]
    [Google Scholar]
  9. Goenaga S, Fabbri C, Dueñas JCR, Gardenal CN, Rossi GC et al. Isolation of yellow fever virus from mosquitoes in Misiones Province, Argentina. Vector-Borne and Zoonotic Diseases 2012; 12:986–993 [View Article]
    [Google Scholar]
  10. Tellechea AL, Luppo V, Morales MA, Groisman B, Baricalla A et al. Surveillance of microcephaly and selected brain anomalies in Argentina: relationship with Zika virus and other congenital infections. Birth Defects Res 2018; 110:1016–1026 [View Article]
    [Google Scholar]
  11. Spinsanti LI, Farías AA, Aguilar JJ, del Pilar Díaz M, Contigiani MS. Immunoglobulin G subclasses in antibody responses to St. Louis encephalitis virus infections. Arch Virol 2011; 156:1861–1864 [View Article]
    [Google Scholar]
  12. Monath TP, Nystrom RR, Bailey RE, Calisher CH, Muth DJ. Immunoglobulin M antibody capture enzyme-linked immunosorbent assay for diagnosis of St. Louis encephalitis. J Clin Microbiol 1984; 20:784–790
    [Google Scholar]
  13. Lindenbach BTH, Rice CM. Flaviviridae: the viruses and their replication. Fields Virology Philadelphia: Lippincott-Raven; 2007 pp 1101–1152
    [Google Scholar]
  14. Lorch MS, Collado MS, Argüelles MH, Rota RP, Spinsanti LI et al. Production of recombinant NS1 protein and its possible use in encephalitic flavivirus differential diagnosis. Protein Expr Purif 2019; 153:18–25 [View Article]
    [Google Scholar]
  15. Valdés K, Alvarez M, Pupo M, Vázquez S, Rodríguez R et al. Human dengue antibodies against structural and nonstructural proteins. Clin Diagn Lab Immunol 2000; 7:856–857 [View Article]
    [Google Scholar]
  16. Narayan R, Raja S, Kumar S, Sambasivam M, Jagadeesan R et al. A novel indirect ELISA for diagnosis of dengue fever. Indian J Med Res 2016; 144:128–133 [View Article]
    [Google Scholar]
  17. Mishra N, Caciula A, Price A, Thakkar R, Ng J et al. Diagnosis of Zika virus infection by peptide array and enzyme-linked immunosorbent assay. MBio 2018; 9: [View Article]
    [Google Scholar]
  18. Zhang T, Wang M-L, Zhang G-R, Liu W, Xiao X-Q et al. Recombinant DENV 2 NS5: an effective antigen for diagnosis of DENV infection. J Virol Methods 2019; 265:35–41 [View Article]
    [Google Scholar]
  19. Wong SJ, Boyle RH, Demarest VL, Woodmansee AN, Kramer LD et al. Immunoassay targeting nonstructural protein 5 to differentiate West Nile virus infection from dengue and St. Louis encephalitis virus infections and from flavivirus vaccination. J Clin Microbiol 2003; 41:4217–4223 [View Article]
    [Google Scholar]
  20. Álvarez-Rodríguez LM, Ramos-Ligonio A, Rosales-Encina JL, Martínez-Cázares MT, Parissi-Crivelli A et al. Expression, purification, and evaluation of diagnostic potential and immunogenicity of a recombinant NS3 protein from all serotypes of dengue virus. J Trop Med 2012; 2012: [View Article]
    [Google Scholar]
  21. Diaz LA, Nemeth NM, Bowen RA, Almiron WR, Contigiani MS. Comparison of Argentinean Saint Louis encephalitis virus non-epidemic and epidemic strain infections in an avian model. PLoS Negl Trop Dis 2011; 5:e1177 [View Article]
    [Google Scholar]
  22. Iglesias NG, Filomatori CV, Gamarnik AV. The F1 motif of dengue virus polymerase NS5 is involved in promoter-dependent RNA synthesis. J Virol 2011; 85:5745–5756 [View Article]
    [Google Scholar]
/content/journal/jgv/10.1099/jgv.0.001359
Loading
/content/journal/jgv/10.1099/jgv.0.001359
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error