1887

Abstract

Up to 75 % of emerging human diseases are zoonoses, spread from animals to humans. Although bacteria, fungi and parasites can be causative agents, the majority of zoonotic infections are caused by viral pathogens. During the past 20 years many factors have converged to cause a dramatic resurgence or emergence of zoonotic diseases. Some of these factors include demographics, social changes, urban sprawl, changes in agricultural practices and global climate changes. In the period between 2014–2017 zoonotic viruses including ebola virus (EBOV), chikungunya virus (CHIKV), dengue virus (DENV) and zika virus (ZIKV), caused prominent outbreaks resulting in significant public health and economic burdens, especially in developing areas where these diseases are most prevalent. When a viral pathogen invades a new human host, it is the innate immune system that serves as the first line of defence. Myeloid cells are especially important to help fight viral infections, including those of zoonotic origins. However, viruses such as EBOV, CHIKV, DENV and ZIKV have evolved mechanisms that allow circumvention of the host’s innate immune response, avoiding eradication and leading to severe clinical disease. Herein, the importance of myeloid cells in host defence is discussed and the mechanisms by which these viruses exploit myeloid cells are highlighted. The insights provided in this review will be invaluable for future studies looking to identify potential therapeutic targets towards the treatment of these emerging diseases.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001024
2018-06-25
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/99/8/953.html?itemId=/content/journal/jgv/10.1099/jgv.0.001024&mimeType=html&fmt=ahah

References

  1. Black BO, Caluwaerts S, Achar J. Ebola viral disease and pregnancy. Obstet Med 2015;8:108–113 [CrossRef][PubMed]
    [Google Scholar]
  2. Negredo A, Palacios G, Vázquez-Morón S, González F, Dopazo H et al. Discovery of an ebolavirus-like filovirus in Europe. PLoS Pathog 2011;7:e1002304 [CrossRef][PubMed]
    [Google Scholar]
  3. Kuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM et al. Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations. Arch Virol 2010;155:2083–2103 [CrossRef][PubMed]
    [Google Scholar]
  4. Schieffelin JS, Shaffer JG, Goba A, Gbakie M, Gire SK et al. Clinical illness and outcomes in patients with Ebola in Sierra Leone. N Engl J Med 2014;371:2092–2100 [CrossRef][PubMed]
    [Google Scholar]
  5. Rollin PE, Bausch DG, Sanchez A. Blood chemistry measurements and D-Dimer levels associated with fatal and nonfatal outcomes in humans infected with Sudan Ebola virus. J Infect Dis 2007;196:S364–S371 [CrossRef][PubMed]
    [Google Scholar]
  6. Kortepeter MG, Bausch DG, Bray M. Basic clinical and laboratory features of filoviral hemorrhagic fever. J Infect Dis 2011;204:S810–S816 [CrossRef][PubMed]
    [Google Scholar]
  7. Centers for Disease Control Guidance for safe handling of human remains of Ebola patients in U. S. Hospitals and Mortuaries. Atlanta, GA, USA, Prevention CfDCa (NCEZID) NCfEaZID, (DHCPP) DoH-CPaP, (VSPB) VSPB. 2014 15th December 2014
  8. Zaki SR, Goldsmith CS. Pathologic features of filovirus infections in humans. Curr Top Microbiol Immunol 1999;235:97–116[PubMed]
    [Google Scholar]
  9. Martines RB, Ng DL, Greer PW, Rollin PE, Zaki SR. Tissue and cellular tropism, pathology and pathogenesis of Ebola and Marburg viruses. J Pathol 2015;235:153–174 [CrossRef][PubMed]
    [Google Scholar]
  10. Wyers M, Formenty P, Cherel Y, Guigand L, Fernandez B et al. Histopathological and immunohistochemical studies of lesions associated with Ebola virus in a naturally infected chimpanzee. J Infect Dis 1999;179:S54–S59 [CrossRef][PubMed]
    [Google Scholar]
  11. Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009;325:612–616 [CrossRef][PubMed]
    [Google Scholar]
  12. Nkoghe D, Leroy EM, Toung-Mve M, Gonzalez JP. Cutaneous manifestations of filovirus infections. Int J Dermatol 2012;51:1037–1043 [CrossRef][PubMed]
    [Google Scholar]
  13. Rodriguez LL, de Roo A, Guimard Y, Trappier SG, Sanchez A et al. Persistence and genetic stability of Ebola virus during the outbreak in Kikwit, Democratic Republic of the Congo, 1995. J Infect Dis 1999;179:S170–S176 [CrossRef][PubMed]
    [Google Scholar]
  14. Baskerville A, Fisher-Hoch SP, Neild GH, Dowsett AB. Ultrastructural pathology of experimental Ebola haemorrhagic fever virus infection. J Pathol 1985;147:199–209 [CrossRef][PubMed]
    [Google Scholar]
  15. Nakayama E, Saijo M. Animal models for Ebola and Marburg virus infections. Front Microbiol 2013;4:267 [CrossRef][PubMed]
    [Google Scholar]
  16. Davis KJ, Anderson AO, Geisbert TW, Steele KE, Geisbert JB et al. Pathology of experimental Ebola virus infection in African green monkeys. Involvement of fibroblastic reticular cells. Arch Pathol Lab Med 1997;121:805–819[PubMed]
    [Google Scholar]
  17. Fisher-Hoch SP, Brammer TL, Trappier SG, Hutwagner LC, Farrar BB et al. Pathogenic potential of filoviruses: role of geographic origin of primate host and virus strain. J Infect Dis 1992;166:753–763 [CrossRef][PubMed]
    [Google Scholar]
  18. Reed DS, Lackemeyer MG, Garza NL, Sullivan LJ, Nichols DK. Aerosol exposure to Zaire ebolavirus in three nonhuman primate species: differences in disease course and clinical pathology. Microbes Infect 2011;13:930–936 [CrossRef][PubMed]
    [Google Scholar]
  19. Jahrling PB, Geisbert TW, Jaax NK, Hanes MA, Ksiazek TG et al. Experimental infection of cynomolgus macaques with Ebola-Reston filoviruses from the 1989-1990 U.S. epizootic. Arch Virol Suppl 1996;11:115–134[PubMed]
    [Google Scholar]
  20. Marzi A, Engelmann F, Feldmann F, Haberthur K, Shupert WL et al. Antibodies are necessary for rVSV/ZEBOV-GP-mediated protection against lethal Ebola virus challenge in nonhuman primates. Proc Natl Acad Sci USA 2013;110:1893–1898 [CrossRef][PubMed]
    [Google Scholar]
  21. Qiu X, Wong G, Fernando L, Audet J, Bello A et al. mAbs and Ad-vectored IFN-α therapy rescue Ebola-infected nonhuman primates when administered after the detection of viremia and symptoms. Sci Transl Med 2013;207:ra143
    [Google Scholar]
  22. Qiu X, Audet J, Wong G, Pillet S, Bello A et al. Successful treatment of ebola virus-infected cynomolgus macaques with monoclonal antibodies. Sci Transl Med 2012;4:138ra81 [CrossRef][PubMed]
    [Google Scholar]
  23. Sullivan NJ, Hensley L, Asiedu C, Geisbert TW, Stanley D et al. CD8+ cellular immunity mediates rAd5 vaccine protection against Ebola virus infection of nonhuman primates. Nat Med 2011;17:1128–1131 [CrossRef][PubMed]
    [Google Scholar]
  24. Taniguchi S, Sayama Y, Nagata N, Ikegami T, Miranda ME et al. Analysis of the humoral immune responses among cynomolgus macaque naturally infected with Reston virus during the 1996 outbreak in the Philippines. BMC Vet Res 2012;8:189 [CrossRef][PubMed]
    [Google Scholar]
  25. Ebihara H, Rockx B, Marzi A, Feldmann F, Haddock E et al. Host response dynamics following lethal infection of Rhesus macaques with Zaire ebolavirus. J Infect Dis 2011;204:S991–S999 [CrossRef][PubMed]
    [Google Scholar]
  26. Johnson RF, Dodd LE, Yellayi S, Gu W, Cann JA et al. Simian hemorrhagic fever virus infection of Rhesus macaques as a model of viral hemorrhagic fever: clinical characterization and risk factors for severe disease. Virology 2011;421:129–140 [CrossRef][PubMed]
    [Google Scholar]
  27. Martins K, Cooper C, Warren T, Wells J, Bell T et al. Characterization of clinical and immunological parameters during Ebola virus infection of rhesus macaques. Viral Immunol 2015;28:32–41 [CrossRef][PubMed]
    [Google Scholar]
  28. Marzi A, Yoshida R, Miyamoto H, Ishijima M, Suzuki Y et al. Protective efficacy of neutralizing monoclonal antibodies in a nonhuman primate model of Ebola hemorrhagic fever. PLoS One 2012;7:e36192 [CrossRef][PubMed]
    [Google Scholar]
  29. Pettitt J, Zeitlin L, Kim DH, Working C, Johnson JC et al. Therapeutic intervention of Ebola virus infection in rhesus macaques with the MB-003 monoclonal antibody cocktail. Sci Transl Med 2013;5:199ra113 [CrossRef][PubMed]
    [Google Scholar]
  30. Qiu X, Wong G, Audet J, Bello A, Fernando L et al. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 2014;514:47–53 [CrossRef][PubMed]
    [Google Scholar]
  31. Smith LM, Hensley LE, Geisbert TW, Johnson J, Stossel A et al. Interferon-β therapy prolongs survival in rhesus macaque models of Ebola and Marburg hemorrhagic fever. J Infect Dis 2013;208:310–318 [CrossRef][PubMed]
    [Google Scholar]
  32. Twenhafel NA, Mattix ME, Johnson JC, Robinson CG, Pratt WD et al. Pathology of experimental aerosol Zaire ebolavirus infection in Rhesus macaques. Vet Pathol 2013;50:514–529 [CrossRef][PubMed]
    [Google Scholar]
  33. Ryabchikova EI, Kolesnikova LV, Luchko SV. An analysis of features of pathogenesis in two animal models of Ebola virus infection. J Infect Dis 1999;179:S199–S202 [CrossRef][PubMed]
    [Google Scholar]
  34. Perry DL, Bollinger L, White GL. The Baboon (Papio spp.) as a model of human Ebola virus infection. Viruses 2012;4:2400–2416 [CrossRef][PubMed]
    [Google Scholar]
  35. Kudoyarova-Zubavichene NM, Sergeyev NN, Chepurnov AA, Netesov SV. Preparation and use of hyperimmune serum for prophylaxis and therapy of Ebola virus infections. J Infect Dis 1999;179:S218–S223 [CrossRef][PubMed]
    [Google Scholar]
  36. Ignatiev GM, Dadaeva AA, Luchko SV, Chepurnov AA. Immune and pathophysiological processes in baboons experimentally infected with Ebola virus adapted to guinea pigs. Immunol Lett 2000;71:131–140 [CrossRef][PubMed]
    [Google Scholar]
  37. Ebihara H, Zivcec M, Gardner D, Falzarano D, Lacasse R et al. A Syrian golden hamster model recapitulating ebola hemorrhagic fever. J Infect Dis 2013;207:306–318 [CrossRef][PubMed]
    [Google Scholar]
  38. Geisbert TW, Hensley LE, Larsen T, Young HA, Reed DS et al. Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. Am J Pathol 2003;163:2347–2370 [CrossRef][PubMed]
    [Google Scholar]
  39. Schnittler HJ, Feldmann H. Marburg and Ebola hemorrhagic fevers: does the primary course of infection depend on the accessibility of organ-specific macrophages?. Clin Infect Dis 1998;27:404–406 [CrossRef][PubMed]
    [Google Scholar]
  40. Bosio CM, Moore BD, Warfield KL, Ruthel G, Mohamadzadeh M et al. Ebola and Marburg virus-like particles activate human myeloid dendritic cells. Virology 2004;326:280–287 [CrossRef][PubMed]
    [Google Scholar]
  41. Cilloniz C, Ebihara H, Ni C, Neumann G, Korth MJ et al. Functional genomics reveals the induction of inflammatory response and metalloproteinase gene expression during lethal Ebola virus infection. J Virol 2011;85:9060–9068 [CrossRef][PubMed]
    [Google Scholar]
  42. Gupta M, Mahanty S, Ahmed R, Rollin PE. Monocyte-derived human macrophages and peripheral blood mononuclear cells infected with ebola virus secrete MIP-1α and TNF-α and inhibit poly-IC-induced IFN-alpha in vitro. Virology 2001;284:20–25 [CrossRef][PubMed]
    [Google Scholar]
  43. Baize S, Leroy EM, Georges AJ, Georges-Courbot MC, Capron M et al. Inflammatory responses in Ebola virus-infected patients. Clin Exp Immunol 2002;128:163–168 [CrossRef][PubMed]
    [Google Scholar]
  44. Hutchinson KL, Villinger F, Miranda ME, Ksiazek TG, Peters CJ et al. Multiplex analysis of cytokines in the blood of cynomolgus macaques naturally infected with Ebola virus (Reston serotype). J Med Virol 2001;65:561–566 [CrossRef][PubMed]
    [Google Scholar]
  45. Wahl-Jensen V, Kurz S, Feldmann F, Buehler LK, Kindrachuk J et al. Ebola virion attachment and entry into human macrophages profoundly effects early cellular gene expression. PLoS Negl Trop Dis 2011;5:e1359 [CrossRef][PubMed]
    [Google Scholar]
  46. Zampieri CA, Sullivan NJ, Nabel GJ. Immunopathology of highly virulent pathogens: insights from Ebola virus. Nat Immunol 2007;8:1159–1164 [CrossRef][PubMed]
    [Google Scholar]
  47. Wong G, Kobinger GP, Qiu X. Characterization of host immune responses in Ebola virus infections. Expert Rev Clin Immunol 2014;10:781–790 [CrossRef][PubMed]
    [Google Scholar]
  48. Yen BC, Basler CF. Effects of filovirus interferon antagonists on responses of human monocyte-derived dendritic cells to RNA virus infection. J Virol 2016;90:5108–5118 [CrossRef][PubMed]
    [Google Scholar]
  49. Chang TH, Kubota T, Matsuoka M, Jones S, Bradfute SB et al. Ebola Zaire virus blocks type I interferon production by exploiting the host SUMO modification machinery. PLoS Pathog 2009;5:e1000493 [CrossRef][PubMed]
    [Google Scholar]
  50. Hensley LE, Young HA, Jahrling PB, Geisbert TW. Proinflammatory response during Ebola virus infection of primate models: possible involvement of the tumor necrosis factor receptor superfamily. Immunol Lett 2002;80:169–179 [CrossRef][PubMed]
    [Google Scholar]
  51. Bray M, Geisbert TW. Ebola virus: the role of macrophages and dendritic cells in the pathogenesis of Ebola hemorrhagic fever. Int J Biochem Cell Biol 2005;37:1560–1566 [CrossRef][PubMed]
    [Google Scholar]
  52. Bray M, Mahanty S. Ebola hemorrhagic fever and septic shock. J Infect Dis 2003;188:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  53. Geisbert TW, Young HA, Jahrling PB, Davis KJ, Larsen T et al. Pathogenesis of Ebola hemorrhagic fever in primate models: evidence that hemorrhage is not a direct effect of virus-induced cytolysis of endothelial cells. Am J Pathol 2003;163:2371–2382 [CrossRef][PubMed]
    [Google Scholar]
  54. Mahanty S, Bray M. Pathogenesis of filoviral haemorrhagic fevers. Lancet Infect Dis 2004;4:487–498 [CrossRef][PubMed]
    [Google Scholar]
  55. Geisbert TW, Young HA, Jahrling PB, Davis KJ, Kagan E et al. Mechanisms underlying coagulation abnormalities in ebola hemorrhagic fever: overexpression of tissue factor in primate monocytes/macrophages is a key event. J Infect Dis 2003;188:1618–1629 [CrossRef][PubMed]
    [Google Scholar]
  56. Gupta M, Spiropoulou C, Rollin PE. Ebola virus infection of human PBMCs causes massive death of macrophages, CD4 and CD8 T cell sub-populations in vitro. Virology 2007;364:45–54 [CrossRef][PubMed]
    [Google Scholar]
  57. Gupta M, Goldsmith CS, Metcalfe MG, Spiropoulou CF, Spipopoulou CF et al. Reduced virus replication, proinflammatory cytokine production, and delayed macrophage cell death in human PBMCs infected with the newly discovered Bundibugyo ebolavirus relative to Zaire ebolavirus. Virology 2010;402:203–208 [CrossRef][PubMed]
    [Google Scholar]
  58. Mahanty S, Hutchinson K, Agarwal S, McRae M, Rollin PE et al. Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses. J Immunol 2003;170:2797–2801 [CrossRef][PubMed]
    [Google Scholar]
  59. Martinez O, Johnson JC, Honko A, Yen B, Shabman RS et al. Ebola virus exploits a monocyte differentiation program to promote its entry. J Virol 2013;87:3801–3814 [CrossRef][PubMed]
    [Google Scholar]
  60. Lubaki NM, Ilinykh P, Pietzsch C, Tigabu B, Freiberg AN et al. The lack of maturation of Ebola virus-infected dendritic cells results from the cooperative effect of at least two viral domains. J Virol 2013;87:7471–7485 [CrossRef][PubMed]
    [Google Scholar]
  61. Yen B, Mulder LC, Martinez O, Basler CF. Molecular basis for ebolavirus VP35 suppression of human dendritic cell maturation. J Virol 2014;88:12500–12510 [CrossRef][PubMed]
    [Google Scholar]
  62. Jin H, Yan Z, Prabhakar BS, Feng Z, Ma Y et al. The VP35 protein of Ebola virus impairs dendritic cell maturation induced by virus and lipopolysaccharide. J Gen Virol 2010;91:352–361 [CrossRef][PubMed]
    [Google Scholar]
  63. Steinman RM, Hemmi H. Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol 2006;311:17–58[PubMed]
    [Google Scholar]
  64. Dolnik O, Volchkova V, Garten W, Carbonnelle C, Becker S et al. Ectodomain shedding of the glycoprotein GP of Ebola virus. Embo J 2004;23:2175–2184 [CrossRef][PubMed]
    [Google Scholar]
  65. Feldmann H, Volchkov VE, Volchkova VA, Klenk HD. The glycoproteins of Marburg and Ebola virus and their potential roles in pathogenesis. Arch Virol Suppl 1999;15:159–169[PubMed]
    [Google Scholar]
  66. Escudero-Pérez B, Volchkova VA, Dolnik O, Lawrence P, Volchkov VE. Shed GP of Ebola virus triggers immune activation and increased vascular permeability. PLoS Pathog 2014;10:e1004509 [CrossRef][PubMed]
    [Google Scholar]
  67. Okumura A, Pitha PM, Yoshimura A, Harty RN. Interaction between Ebola virus glycoprotein and host toll-like receptor 4 leads to induction of proinflammatory cytokines and SOCS1. J Virol 2010;84:27–33 [CrossRef][PubMed]
    [Google Scholar]
  68. Wahl-Jensen V, Kurz SK, Hazelton PR, Schnittler HJ, Ströher U et al. Role of Ebola virus secreted glycoproteins and virus-like particles in activation of human macrophages. J Virol 2005;79:2413–2419 [CrossRef][PubMed]
    [Google Scholar]
  69. Mohamadzadeh M, Coberley SS, Olinger GG, Kalina WV, Ruthel G et al. Activation of triggering receptor expressed on myeloid cells-1 on human neutrophils by marburg and ebola viruses. J Virol 2006;80:7235–7244 [CrossRef][PubMed]
    [Google Scholar]
  70. Daubeuf B, Mathison J, Spiller S, Hugues S, Herren S et al. TLR4/MD-2 monoclonal antibody therapy affords protection in experimental models of septic shock. J Immunol 2007;179:6107–6114 [CrossRef][PubMed]
    [Google Scholar]
  71. Suhrbier A, Jaffar-Bandjee MC, Gasque P. Arthritogenic alphaviruses–an overview. Nat Rev Rheumatol 2012;8:420–429 [CrossRef][PubMed]
    [Google Scholar]
  72. Hoarau JJ, Jaffar Bandjee MC, Krejbich Trotot P, Das T, Li-Pat-Yuen G et al. Persistent chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust host immune response. J Immunol 2010;184:5914–5927 [CrossRef][PubMed]
    [Google Scholar]
  73. Diallo M, Thonnon J, Traore-Lamizana M, Fontenille D. Vectors of Chikungunya virus in Senegal: current data and transmission cycles. Am J Trop Med Hyg 1999;60:281–286 [CrossRef][PubMed]
    [Google Scholar]
  74. Dickinson DB, McGillivray GM, McIntosh BM, Winter PA. Antibodies against certain arboviruses in sera from human beings and domestic animals from the south-western and north-western regions of the Cape Province of South Africa. S Afr J Med Sci 1965;30:11–18[PubMed]
    [Google Scholar]
  75. Ramful D, Carbonnier M, Pasquet M, Bouhmani B, Ghazouani J et al. Mother-to-child transmission of Chikungunya virus infection. Pediatr Infect Dis J 2007;26:811–815 [CrossRef][PubMed]
    [Google Scholar]
  76. Gérardin P, Barau G, Michault A, Bintner M, Randrianaivo H et al. Multidisciplinary prospective study of mother-to-child Chikungunya virus infections on the island of La Réunion. PLoS Med 2008;5:e60 [CrossRef][PubMed]
    [Google Scholar]
  77. Torres JR, Falleiros-Arlant LH, Dueñas L, Pleitez-Navarrete J, Salgado DM et al. Congenital and perinatal complications of chikungunya fever: a Latin American experience. Int J Infect Dis 2016;51:85–88 [CrossRef][PubMed]
    [Google Scholar]
  78. Gérardin P, Sampériz S, Ramful D, Boumahni B, Bintner M et al. Neurocognitive outcome of children exposed to perinatal mother-to-child Chikungunya virus infection: the CHIMERE cohort study on Reunion Island. PLoS Negl Trop Dis 2014;8:e2996 [CrossRef][PubMed]
    [Google Scholar]
  79. Robinson MC. An epidemic of virus disease in Southern Province, Tanganyika territory, in 1952–1953. Trans R Soc Trop Med Hyg 1955;49:28–32 [CrossRef]
    [Google Scholar]
  80. Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S. A single mutation in Chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 2007;3:e201 [CrossRef][PubMed]
    [Google Scholar]
  81. Leparc-Goffart I, Nougairede A, Cassadou S, Prat C, de Lamballerie X. Chikungunya in the Americas. Lancet 2014;383:514 [CrossRef][PubMed]
    [Google Scholar]
  82. Morrison TE. Reemergence of Chikungunya virus. J Virol 2014;88:11644–11647 [CrossRef][PubMed]
    [Google Scholar]
  83. Laurent P, Le Roux K, Grivard P, Bertil G, Naze F et al. Development of a sensitive real-time reverse transcriptase PCR assay with an internal control to detect and quantify Chikungunya virus. Clin Chem 2007;53:1408–1414 [CrossRef][PubMed]
    [Google Scholar]
  84. Dupuis-Maguiraga L, Noret M, Brun S, Le Grand R, Gras G et al. Chikungunya disease: infection-associated markers from the acute to the chronic phase of arbovirus-induced arthralgia. PLoS Negl Trop Dis 2012;6:e1446 [CrossRef][PubMed]
    [Google Scholar]
  85. Economopoulou A, Dominguez M, Helynck B, Sissoko D, Wichmann O et al. Atypical Chikungunya virus infections: clinical manifestations, mortality and risk factors for severe disease during the 2005–2006 outbreak on Réunion. Epidemiol Infect 2009;137:534–541 [CrossRef][PubMed]
    [Google Scholar]
  86. Mahendradas P, Ranganna SK, Shetty R, Balu R, Narayana KM et al. Ocular manifestations associated with chikungunya. Ophthalmology 2008;115:287–291 [CrossRef][PubMed]
    [Google Scholar]
  87. Lakshmi V, Neeraja M, Subbalaxmi MV, Parida MM, Dash PK et al. Clinical features and molecular diagnosis of Chikungunya fever from South India. Clin Infect Dis 2008;46:1436–1442 [CrossRef][PubMed]
    [Google Scholar]
  88. Lemant J, Boisson V, Winer A, Thibault L, André H et al. Serious acute Chikungunya virus infection requiring intensive care during the Reunion Island outbreak in 2005–2006. Crit Care Med 2008;36:2536–2541 [CrossRef][PubMed]
    [Google Scholar]
  89. Labadie K, Larcher T, Joubert C, Mannioui A, Delache B et al. Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J Clin Invest 2010;120:894–906 [CrossRef][PubMed]
    [Google Scholar]
  90. Ganesan K, Diwan A, Shankar SK, Desai SB, Sainani GS et al. Chikungunya encephalomyeloradiculitis: report of 2 cases with neuroimaging and 1 case with autopsy findings. AJNR Am J Neuroradiol 2008;29:1636–1637 [CrossRef][PubMed]
    [Google Scholar]
  91. Fujikado N, Saijo S, Yonezawa T, Shimamori K, Ishii A et al. Dcir deficiency causes development of autoimmune diseases in mice due to excess expansion of dendritic cells. Nat Med 2008;14:176–180 [CrossRef][PubMed]
    [Google Scholar]
  92. Long KM, Whitmore AC, Ferris MT, Sempowski GD, McGee C et al. Dendritic cell immunoreceptor regulates Chikungunya virus pathogenesis in mice. J Virol 2013;87:5697–5706 [CrossRef][PubMed]
    [Google Scholar]
  93. Agarwal A, Joshi G, Nagar DP, Sharma AK, Sukumaran D et al. Mosquito saliva induced cutaneous events augment Chikungunya virus replication and disease progression. Infect Genet Evol 2016;40:126–135 [CrossRef][PubMed]
    [Google Scholar]
  94. Sourisseau M, Schilte C, Casartelli N, Trouillet C, Guivel-Benhassine F et al. Characterization of reemerging Chikungunya virus. PLoS Pathog 2007;3:e89 [CrossRef][PubMed]
    [Google Scholar]
  95. Her Z, Malleret B, Chan M, Ong EK, Wong SC et al. Active infection of human blood monocytes by Chikungunya virus triggers an innate immune response. J Immunol 2010;184:5903–5913 [CrossRef][PubMed]
    [Google Scholar]
  96. Krejbich-Trotot P, Denizot M, Hoarau JJ, Jaffar-Bandjee MC, Das T et al. Chikungunya virus mobilizes the apoptotic machinery to invade host cell defenses. Faseb J 2011;25:314–325 [CrossRef][PubMed]
    [Google Scholar]
  97. Gardner J, Anraku I, Le TT, Larcher T, Major L et al. Chikungunya virus arthritis in adult wild-type mice. J Virol 2010;84:8021–8032 [CrossRef][PubMed]
    [Google Scholar]
  98. Poo YS, Nakaya H, Gardner J, Larcher T, Schroder WA et al. CCR2 deficiency promotes exacerbated chronic erosive neutrophil-dominated Chikungunya virus arthritis. J Virol 2014;88:6862–6872 [CrossRef][PubMed]
    [Google Scholar]
  99. Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol 2011;12:1035–1044 [CrossRef][PubMed]
    [Google Scholar]
  100. Stoermer KA, Burrack A, Oko L, Montgomery SA, Borst LB et al. Genetic ablation of arginase 1 in macrophages and neutrophils enhances clearance of an arthritogenic alphavirus. J Immunol 2012;189:4047–4059 [CrossRef][PubMed]
    [Google Scholar]
  101. Burrack K, Her Z, Gill R, Ng L, Morrison T. Myeloid cell Arg1 and iNOS inhibit control of arthritogenic alphavirus infection by suppressing anti-viral T cells (VIR1P. 965). J Immunol 2014;192:74.77
    [Google Scholar]
  102. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 2009;29:313–326 [CrossRef][PubMed]
    [Google Scholar]
  103. Venugopalan A, Ghorpade RP, Chopra A. Cytokines in acute chikungunya. PLoS One 2014;9:e111305 [CrossRef][PubMed]
    [Google Scholar]
  104. Rulli NE, Rolph MS, Srikiatkhachorn A, Anantapreecha S, Guglielmotti A et al. Protection from arthritis and myositis in a mouse model of acute Chikungunya virus disease by bindarit, an inhibitor of monocyte chemotactic protein-1 synthesis. J Infect Dis 2011;204:1026–1030 [CrossRef][PubMed]
    [Google Scholar]
  105. Schilte C, Couderc T, Chretien F, Sourisseau M, Gangneux N et al. Type I IFN controls Chikungunya virus via its action on nonhematopoietic cells. J Exp Med 2010;207:429–442 [CrossRef][PubMed]
    [Google Scholar]
  106. World Health Organization 2015; Impact of Dengue. www.who.int/csr/disease/dengue/impact/en/
  107. Halstead SB. Dengue antibody-dependent enhancement: knowns and unknowns. Microbiol Spectr 2014;2: [CrossRef][PubMed]
    [Google Scholar]
  108. Centers for Disease Control 2014; DengueEpidemiology [cited 2015 20th November]. Available from:. www.cdc.gov/dengue/epidemiology
  109. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW et al. The global distribution and burden of dengue. Nature 2013;496:504–507 [CrossRef][PubMed]
    [Google Scholar]
  110. Lovera D, Araya S, Mesquita MJ, Avalos C, Ledesma S et al. Prospective applicability study of the new dengue classification system for clinical management in children. Pediatr Infect Dis J 2014;33:933–935 [CrossRef][PubMed]
    [Google Scholar]
  111. World Health Organisation Dengue: guidelines for diagnosis, treatment, prevention and control.
  112. Durán A, Ochoa E, Alcocer S, Gómez M, Millano M et al. Frequency of gastrointestinal signs and symptoms of dengue. Analysis of a cohort of 1484 patients. Invest Clin 2013;54:299–310[PubMed]
    [Google Scholar]
  113. Pothapregada S, Kamalakannan B, Thulasingam M. Clinical profile of atypical manifestations of dengue fever. Indian J Pediatr 2016;83:493–499 [CrossRef][PubMed]
    [Google Scholar]
  114. Jessie K, Fong MY, Devi S, Lam SK, Wong KT. Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis 2004;189:1411–1418 [CrossRef][PubMed]
    [Google Scholar]
  115. Aye KS, Charngkaew K, Win N, Wai KZ, Moe K et al. Pathologic highlights of dengue hemorrhagic fever in 13 autopsy cases from Myanmar. Hum Pathol 2014;45:1221–1233 [CrossRef][PubMed]
    [Google Scholar]
  116. Póvoa TF, Alves AM, Oliveira CA, Nuovo GJ, Chagas VL et al. The pathology of severe dengue in multiple organs of human fatal cases: histopathology, ultrastructure and virus replication. PLoS One 2014;9:e83386 [CrossRef][PubMed]
    [Google Scholar]
  117. Zellweger RM, Shresta S. Mouse models to study dengue virus immunology and pathogenesis. Front Immunol 2014;5:151 [CrossRef][PubMed]
    [Google Scholar]
  118. Ferreira MS, de Castro PH, Silva GA, Casseb SM, Dias Júnior AG et al. Callithrix penicillata: a feasible experimental model for dengue virus infection. Immunol Lett 2014;158:126–133 [CrossRef][PubMed]
    [Google Scholar]
  119. Kou Z, Quinn M, Chen H, Rodrigo WW, Rose RC et al. Monocytes, but not T or B cells, are the principal target cells for dengue virus (DV) infection among human peripheral blood mononuclear cells. J Med Virol 2008;80:134–146 [CrossRef][PubMed]
    [Google Scholar]
  120. Schmid MA, Glasner DR, Shah S, Michlmayr D, Kramer LD et al. Mosquito saliva increases endothelial permeability in the skin, immune cell migration, and dengue pathogenesis during antibody-dependent enhancement. PLoS Pathog 2016;12:e1005676 [CrossRef][PubMed]
    [Google Scholar]
  121. Schmid MA, Harris E. Monocyte recruitment to the dermis and differentiation to dendritic cells increases the targets for dengue virus replication. PLoS Pathog 2014;10:e1004541 [CrossRef][PubMed]
    [Google Scholar]
  122. Wong KL, Chen W, Balakrishnan T, Toh YX, Fink K et al. Susceptibility and response of human blood monocyte subsets to primary dengue virus infection. PLoS One 2012;7:e36435 [CrossRef][PubMed]
    [Google Scholar]
  123. Fink K, Ng C, Nkenfou C, Vasudevan SG, van Rooijen N et al. Depletion of macrophages in mice results in higher dengue virus titers and highlights the role of macrophages for virus control. Eur J Immunol 2009;39:2809–2821 [CrossRef][PubMed]
    [Google Scholar]
  124. Chu YT, Wan SW, Anderson R, Lin YS. Mast cell-macrophage dynamics in modulation of dengue virus infection in skin. Immunology 2015;146:163–172 [CrossRef][PubMed]
    [Google Scholar]
  125. Kwissa M, Nakaya HI, Onlamoon N, Wrammert J, Villinger F et al. Dengue virus infection induces expansion of a CD14+ CD16+ monocyte population that stimulates plasmablast differentiation. Cell Host Microbe 2014;16:115–127 [CrossRef][PubMed]
    [Google Scholar]
  126. Marinho CF, Azeredo EL, Torrentes-Carvalho A, Marins-dos-Santos A, Kubelka CF et al. Down-regulation of complement receptors on the surface of host monocyte even as in vitro complement pathway blocking interferes in dengue infection. PLoS One 2014;9:e102014 [CrossRef][PubMed]
    [Google Scholar]
  127. Klomporn P, Panyasrivanit M, Wikan N, Smith DR. Dengue infection of monocytic cells activates ER stress pathways, but apoptosis is induced through both extrinsic and intrinsic pathways. Virology 2011;409:189–197 [CrossRef][PubMed]
    [Google Scholar]
  128. Tsai CY, Liong KH, Gunalan MG, Li N, Lim DS et al. Type I IFNs and IL-18 regulate the antiviral response of primary human γδ T cells against dendritic cells infected with Dengue virus. J Immunol 2015;194:3890–3900 [CrossRef][PubMed]
    [Google Scholar]
  129. Kelley JF, Kaufusi PH, Volper EM, Nerurkar VR. Maturation of dengue virus nonstructural protein 4B in monocytes enhances production of dengue hemorrhagic fever-associated chemokines and cytokines. Virology 2011;418:27–39 [CrossRef][PubMed]
    [Google Scholar]
  130. Hottz ED, Medeiros-de-Moraes IM, Vieira-de-Abreu A, de Assis EF, Vals-de-Souza R et al. Platelet activation and apoptosis modulate monocyte inflammatory responses in dengue. J Immunol 2014;193:1864–1872 [CrossRef][PubMed]
    [Google Scholar]
  131. Valero N, Mosquera J, Levy A, Añez G, Marcucci R et al. Differential induction of cytokines by human neonatal, adult, and elderly monocyte/macrophages infected with dengue virus. Viral Immunol 2014;27:151–159 [CrossRef][PubMed]
    [Google Scholar]
  132. Singla M, Kar M, Sethi T, Kabra SK, Lodha R et al. Immune response to Dengue virus infection in pediatric patients in New Delhi, India–association of viremia, inflammatory mediators and monocytes with disease severity. PLoS Negl Trop Dis 2016;10:e0004497 [CrossRef][PubMed]
    [Google Scholar]
  133. He L, Wu SY, Wang TL, Zhang P, Huang X. [Induction of VEGF in human monocytes by DENV infection and the regulatory mechanism]. Bing Du Xue Bao 2012;28:652–657[PubMed]
    [Google Scholar]
  134. Chuang YC, Chen HR, Yeh TM. Pathogenic roles of macrophage migration inhibitory factor during dengue virus infection. Mediators Inflamm 2015;2015:1–7 [CrossRef][PubMed]
    [Google Scholar]
  135. Sun P, Bauza K, Pal S, Liang Z, Wu SJ et al. Infection and activation of human peripheral blood monocytes by dengue viruses through the mechanism of antibody-dependent enhancement. Virology 2011;421:245–252 [CrossRef][PubMed]
    [Google Scholar]
  136. Ubol S, Halstead SB. How innate immune mechanisms contribute to antibody-enhanced viral infections. Clin Vaccine Immunol 2010;17:1829–1835 [CrossRef][PubMed]
    [Google Scholar]
  137. Puerta-Guardo H, Raya-Sandino A, González-Mariscal L, Rosales VH, Ayala-Dávila J et al. The cytokine response of U937-derived macrophages infected through antibody-dependent enhancement of dengue virus disrupts cell apical-junction complexes and increases vascular permeability. J Virol 2013;87:7486–7501 [CrossRef][PubMed]
    [Google Scholar]
  138. Herrero LJ, Zakhary A, Gahan ME, Nelson MA, Herring BL et al. Dengue virus therapeutic intervention strategies based on viral, vector and host factors involved in disease pathogenesis. Pharmacol Ther 2013;137:266–282 [CrossRef][PubMed]
    [Google Scholar]
  139. Alhoot MA, Wang SM, Sekaran SD. Inhibition of dengue virus entry and multiplication into monocytes using RNA interference. PLoS Negl Trop Dis 2011;5:e1410 [CrossRef][PubMed]
    [Google Scholar]
  140. World Health Organization 2016; Zika Virus. www.who.int/mediacentre/factsheets/zika/en/ [accessed 9 May 2016]
  141. Marchette NJ, Garcia R, Rudnick A. Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. Am J Trop Med Hyg 1969;18:411–415 [CrossRef][PubMed]
    [Google Scholar]
  142. Musso D, Roche C, Robin E, Nhan T, Teissier A et al. Potential sexual transmission of Zika virus. Emerg Infect Dis 2015;21:359–361 [CrossRef][PubMed]
    [Google Scholar]
  143. Besnard M, Lastere S, Teissier A, Cao-Lormeau V, Musso D. Evidence of perinatal transmission of Zika virus, French Polynesia, December 2013 and February 2014. Euro Surveill 2014;19:20751 [CrossRef][PubMed]
    [Google Scholar]
  144. Dick GW, Kitchen SF, Haddow AJ. Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg 1952;46:509–520 [CrossRef][PubMed]
    [Google Scholar]
  145. Malone RW, Homan J, Callahan MV, Glasspool-Malone J, Damodaran L et al. Zika virus: medical countermeasure development challenges. PLoS Negl Trop Dis 2016;10:e0004530 [CrossRef][PubMed]
    [Google Scholar]
  146. Faye O, Freire CC, Iamarino A, Faye O, de Oliveira JV et al. Molecular evolution of Zika virus during its emergence in the 20th century. PLoS Negl Trop Dis 2014;8:e2636 [CrossRef][PubMed]
    [Google Scholar]
  147. Cao-Lormeau VM, Musso D. Emerging arboviruses in the Pacific. Lancet 2014;384:1571–1572 [CrossRef][PubMed]
    [Google Scholar]
  148. Petersen E, Wilson ME, Touch S, McCloskey B, Mwaba P et al. Rapid spread of Zika virus in The Americas–implications for public health preparedness for mass gatherings at the 2016 Brazil Olympic Games. Int J Infect Dis 2016;44:11–15 [CrossRef][PubMed]
    [Google Scholar]
  149. Centers for Disease Control Prevention 2016; Zika virus Atlanta, GA USA [updated April 5th 2018]. Available from:. www.cdc.gov/zika/index.html
  150. Arzuza-Ortega L, Polo A, Pérez-Tatis G, López-García H, Parra E et al. Fatal sickle cell disease and Zika virus infection in girl from Colombia. Emerg Infect Dis 2016;22:925–927 [CrossRef][PubMed]
    [Google Scholar]
  151. Fauci AS, Morens DM. Zika virus in the Americas–yet another arbovirus threat. N Engl J Med 2016;374:601–604 [CrossRef][PubMed]
    [Google Scholar]
  152. Tetro JA. Zika and microcephaly: causation, correlation, or coincidence?. Microbes Infect 2016;18:167–168 [CrossRef][PubMed]
    [Google Scholar]
  153. Bullerdiek J, Dotzauer A, Bauer I. The mitotic spindle: linking teratogenic effects of Zika virus with human genetics?. Mol Cytogenet 2016;9: [CrossRef][PubMed]
    [Google Scholar]
  154. Mlakar J, Korva M, Tul N, Popović M, Poljšak-Prijatelj M et al. Zika virus associated with microcephaly. N Engl J Med 2016;374:951–958 [CrossRef][PubMed]
    [Google Scholar]
  155. Hamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A et al. Biology of Zika virus infection in human skin cells. J Virol 2015;89:8880–8896 [CrossRef][PubMed]
    [Google Scholar]
  156. Oliveira Souto I, Alejo-Cancho I, Gascón Brustenga J, Peiró Mestres A, Muñoz Gutiérrez J et al. Persistence of Zika virus in semen 93 days after the onset of symptoms. Enferm Infecc Microbiol Clin 2018;36:21–23 [CrossRef][PubMed]
    [Google Scholar]
  157. Motta IJ, Spencer BR, Cordeiro da Silva SG, Arruda MB, Dobbin JA et al. Evidence for transmission of Zika virus by platelet transfusion. N Engl J Med 2016;375:1101–1103 [CrossRef][PubMed]
    [Google Scholar]
  158. Murray KO, Gorchakov R, Carlson AR, Berry R, Lai L et al. Prolonged detection of Zika virus in vaginal secretions and whole blood. Emerg Infect Dis 2017;23:99–101 [CrossRef][PubMed]
    [Google Scholar]
  159. Aliota MT, Caine EA, Walker EC, Larkin KE, Camacho E et al. Characterization of lethal Zika virus infection in AG129 mice. PLoS Negl Trop Dis 2016;10:e0004682 [CrossRef][PubMed]
    [Google Scholar]
  160. Lazear HM, Govero J, Smith AM, Platt DJ, Fernandez E et al. A mouse model of Zika virus pathogenesis. Cell Host Microbe 2016;19:720–730 [CrossRef][PubMed]
    [Google Scholar]
  161. Fernandes Moron A. Zika virus outbreak and reproductive rights. BJOG 2017;124:549 [CrossRef][PubMed]
    [Google Scholar]
  162. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010;330:841–845 [CrossRef][PubMed]
    [Google Scholar]
  163. Reynolds G, Haniffa M. Human and mouse mononuclear phagocyte networks: a tale of two species?. Front Immunol 2015;6:330 [CrossRef][PubMed]
    [Google Scholar]
  164. Hey YY, Tan JK, O'Neill HC. Redefining myeloid cell subsets in murine spleen. Front Immunol 2015;6:652 [CrossRef][PubMed]
    [Google Scholar]
  165. Waschbisch A, Schröder S, Schraudner D, Sammet L, Weksler B et al. Pivotal role for CD16+ monocytes in immune surveillance of the central nervous system. J Immunol 2016;196:1558–1567 [CrossRef][PubMed]
    [Google Scholar]
  166. Martinez O, Johnson JC, Honko A, Yen B, Shabman RS et al. Ebola virus exploits a monocyte differentiation program to promote its entry. J Virol 2013;87:3801–381 [CrossRef][PubMed]
    [Google Scholar]
  167. Lee JJ, Jacobsen EA, Ochkur SI, McGarry MP, Condjella RM et al. Human versus mouse eosinophils: “That which we call an eosinophil, by any other name would stain as red”. J Allerg Clin Immunol 2012;130:572–584 [CrossRef]
    [Google Scholar]
  168. Melo RC, Weller PF. Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy. Exp Cell Res 2016;347:385–390 [CrossRef][PubMed]
    [Google Scholar]
  169. Samarasinghe AE, Melo RC, Duan S, Lemessurier KS, Liedmann S et al. Eosinophils promote antiviral immunity in mice infected with influenza A virus. J Immunol 2017;198:3214–3226 [CrossRef][PubMed]
    [Google Scholar]
  170. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 2018;18:134–147 [CrossRef][PubMed]
    [Google Scholar]
  171. Iwamoto H, Matsubara T, Nakazato Y, Namba K, Takeda Y et al. Decreased expression of CD200R3 on mouse basophils as a novel marker for IgG1-mediated anaphylaxis. Immun Inflamm Dis 2015;3:280–288 [CrossRef][PubMed]
    [Google Scholar]
  172. Arock M, Schneider E, Boissan M, Tricottet V, Dy M. Differentiation of human basophils: an overview of recent advances and pending questions. J Leukoc Biol 2002;71:557–564[PubMed]
    [Google Scholar]
  173. Dahlmann F, Biedenkopf N, Babler A, Jahnen-Dechent W, Karsten CB et al. Analysis of Ebola virus entry into macrophages. J Infect Dis 2015;212:S247–S257 [CrossRef][PubMed]
    [Google Scholar]
  174. Kumar S, Jaffar-Bandjee MC, Giry C, Connen de Kerillis L, Merits A et al. Mouse macrophage innate immune response to Chikungunya virus infection. Virol J 2012;9:313 [CrossRef][PubMed]
    [Google Scholar]
  175. Kyle JL, Beatty PR, Harris E. Dengue virus infects macrophages and dendritic cells in a mouse model of infection. J Infect Dis 2007;195:1808–1817 [CrossRef]
    [Google Scholar]
  176. Saiz JC, Martín-Acebes MA, Bueno-Marí R, Salomón OD, Villamil-Jiménez LC et al. Zika virus: what have we learnt since the start of the recent epidemic?. Front Microbiol 2017;8:1554 [CrossRef][PubMed]
    [Google Scholar]
  177. Haist KC, Burrack KS, Davenport BJ, Morrison TE. Inflammatory monocytes mediate control of acute alphavirus infection in mice. PLoS Pathog 2017;13:e1006748 [CrossRef][PubMed]
    [Google Scholar]
  178. Lakschevitz FS, Hassanpour S, Rubin A, Fine N, Sun C et al. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res 2016;342:200–209 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001024
Loading
/content/journal/jgv/10.1099/jgv.0.001024
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error