- Volume 99, Issue 8, 2018
Volume 99, Issue 8, 2018
- Editorial
-
- Reviews
-
-
-
How myeloid cells contribute to the pathogenesis of prominent emerging zoonotic diseases
More LessUp to 75 % of emerging human diseases are zoonoses, spread from animals to humans. Although bacteria, fungi and parasites can be causative agents, the majority of zoonotic infections are caused by viral pathogens. During the past 20 years many factors have converged to cause a dramatic resurgence or emergence of zoonotic diseases. Some of these factors include demographics, social changes, urban sprawl, changes in agricultural practices and global climate changes. In the period between 2014–2017 zoonotic viruses including ebola virus (EBOV), chikungunya virus (CHIKV), dengue virus (DENV) and zika virus (ZIKV), caused prominent outbreaks resulting in significant public health and economic burdens, especially in developing areas where these diseases are most prevalent. When a viral pathogen invades a new human host, it is the innate immune system that serves as the first line of defence. Myeloid cells are especially important to help fight viral infections, including those of zoonotic origins. However, viruses such as EBOV, CHIKV, DENV and ZIKV have evolved mechanisms that allow circumvention of the host’s innate immune response, avoiding eradication and leading to severe clinical disease. Herein, the importance of myeloid cells in host defence is discussed and the mechanisms by which these viruses exploit myeloid cells are highlighted. The insights provided in this review will be invaluable for future studies looking to identify potential therapeutic targets towards the treatment of these emerging diseases.
-
-
-
-
Norovirus recombinants: recurrent in the field, recalcitrant in the lab – a scoping review of recombination and recombinant types of noroviruses
More LessNoroviruses are recognized as the major global cause of sporadic and epidemic non-bacterial gastroenteritis in humans. Molecular mechanisms driving norovirus evolution are the accumulation of point mutations and recombination. Intragenotypic recombination has long been postulated to be a driving force of GII.4 noroviruses, the predominant genotype circulating in humans for over two decades. Increasingly, emergence and re-emergence of different intragenotype recombinants have been reported. The number and types of norovirus recombinants remained undefined until the 2007 Journal of General Virology research article ‘Norovirus recombination’ reported an assembly of 20 hitherto unclassified intergenotypic norovirus recombinant types. In the intervening decade, a host of novel recombinants has been analysed. New recombination breakpoints have been described, in vitro and in vivo studies supplement in silico analyses, and advances have been made in analysing factors driving norovirus recombination. This work presents a timely overview of these data and focuses on important aspects of norovirus recombination and its role in norovirus molecular evolution. An overview of intergenogroup, intergenotype, intragenotype and ‘obligatory’ norovirus recombinants as detected via in silico methods in the field is provided, enlarging the scope of intergenotypic recombinant types to 80 in total, and notably including three intergenogroup recombinants. A recap of advances made studying norovirus recombination in the laboratory is given. Putative drivers and constraints of norovirus recombination are discussed and the potential link between recombination and norovirus zoonosis risk is examined.
-
- ICTV Virus Taxonomy Profiles
-
-
-
ICTV Virus Taxonomy Profile: Papillomaviridae
The Papillomaviridae is a family of small, non-enveloped viruses with double-stranded DNA genomes of 5 748 to 8 607 bp. Their classification is based on pairwise nucleotide sequence identity across the L1 open reading frame. Members of the Papillomaviridae primarily infect mucosal and keratinised epithelia, and have been isolated from fish, reptiles, birds and mammals. Despite a long co-evolutionary history with their hosts, some papillomaviruses are pathogens of their natural host species. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Papillomaviridae, which is available at http://www.ictv.global/report/papillomaviridae.
-
-
- Animal
-
- Double-strand RNA Virus
-
-
Identification and characterization of novel mosquito-borne (Kammavanpettai virus) and tick-borne (Wad Medani) reoviruses isolated in India
In 1954, a virus named Wad Medani virus (WMV) was isolated from Hyalomma marginatum ticks from Maharashtra State, India. In 1963, another virus was isolated from Sturnia pagodarum birds in Tamil Nadu, India, and named Kammavanpettai virus (KVPTV) based on the site of its isolation. Originally these virus isolates could not be identified with conventional methods. Here we describe next-generation sequencing studies leading to the determination of their complete genome sequences, and identification of both virus isolates as orbiviruses (family Reoviridae). Sequencing data showed that KVPTV has an AT-rich genome, whereas the genome of WMV is GC-rich. The size of the KVPTV genome is 18 234 nucleotides encoding proteins ranging 238–1290 amino acids (aa) in length. Similarly, the size of the WMV genome is 16 941 nucleotides encoding proteins ranging 214–1305 amino acids in length. Phylogenetic analysis of the VP1 gene, along with the capsid genes VP5 and VP7, revealed that KVPTV is likely a novel mosquito-borne virus and WMV is a tick-borne orbivirus. This study focuses on the phylogenetic comparison of these newly identified orbiviruses with mosquito-, tick- and Culicoides-borne orbiviruses isolated in India and other countries.
-
- Negative-strand RNA Virus
-
-
Characterization of neutralizing epitopes in antigenic site B of recently circulating influenza A(H3N2) viruses
Influenza A(H3N2) viruses are associated with outbreaks worldwide and can cause disease with severe complications. The impact can be reduced by vaccination, which induces neutralizing antibodies that mainly target the haemagglutinin glycoprotein (HA). In this study we generated neutralizing mouse monoclonal antibodies (mAbs) against A/Victoria/361/2011 and identified their epitopes by generating and sequencing escape viruses. The epitopes are located in antigenic site B, which is near the receptor-binding site and is immunodominant in humans. Amino acid (aa) substitutions at positions 156, 158, 159, 189, 190 and 193 in antigenic site B led to reduced ability of mAbs to block receptor-binding. The majority of A(H3N2) viruses that have been circulating since 2014 are antigenically distinct from previous A(H3N2) viruses. The neutralization-sensitive epitopes in antigenic site B of currently circulating viruses were examined with these mAbs. We found that clade 3C.2a viruses, possessing an additional potential glycosylation site at HA1 position N158, were poorly recognized by some of the mAbs, but other residues, notably at position 159, also affected antibody binding. Through a mass spectrometric (MS) analysis of HA, the glycosylated sites of HA1 were established and we determined that residue 158 of HA1 was glycosylated and so modified a neutralization-sensitive epitope. Understanding and monitoring individual epitopes is likely to improve vaccine strain selection.
-
- Positive-strand RNA Viruses
-
-
Point-of-care diagnostic assay for the detection of Zika virus using the recombinase polymerase amplification method
More LessThe sudden and explosive expansion of Zika virus (ZIKV) from the African continent through Oceania and culminating in the outbreak in South America has highlighted the importance of new rapid point-of-care diagnostic tools for the control and prevention of transmission. ZIKV infection has devastating consequences, such as neurological congenital malformations in infants born to infected mothers and Guillain–Barré syndrome in adults. Additionally, its potential for transmission through vector bites, as well as from person to person through blood transfusions and sexual contact, are important considerations for prompt diagnosis. Recombinase polymerase amplification (RPA), an isothermal method, was developed as an alternative field-applicable assay to PCR. Here we report the development of a novel ZIKV real-time reverse transcriptase RPA (RT-RPA) assay capable of detecting a range of different ZIKV strains from a variety of geographical locations. The ZIKV RT-RPA was shown to be highly sensitive, being capable of detecting as few as five copies of target nucleic acid per reaction, and suitable for use with a battery-operated portable device. The ZIKV RT-RPA demonstrated 100 % specificity and 83 % sensitivity in clinical samples. Furthermore, we determined that the ZIKV RT-RPA is a versatile assay that can be applied to crude samples, such as saliva and serum, and can be used as a vector surveillance tool on crude mosquito homogenates. Therefore, the developed ZIKV RT-RPA is a useful diagnostic tool that can be transferred to a resource-limited location, eliminating the need for a specialized and sophisticated laboratory environment and highly trained staff.
-
-
-
Evolutionary dynamics of non-GII genotype 4 (GII.4) noroviruses reveal limited and independent diversification of variants
More LessNoroviruses are extremely diverse, with ≥30 genotypes infecting humans. GII genotype 4 (GII.4) noroviruses, the most prevalent genotype, present a constant accumulation of mutations on the major capsid protein (VP1), resulting in the chronological emergence of new variants every 2–8 years. On the other hand, non-GII.4 noroviruses present a limited number of changes on the capsid protein over time. Despite limited diversification, non-GII.4 viruses can also be associated with large outbreaks. To gain insights into the evolutionary dynamics of non-GII.4 viruses, we performed variant-specific phylogenetic analyses on a comprehensive dataset of 13 genotypes. Although the genotypes with a single variant presented a linear (clock-like) evolution, maximum-likelihood analyses revealed a lack of clock-like signals for the genotypes with ≥3 variants: GI.3, GII.6 and GII.17. Notably, the evolutionary pattern of non-GII.4 viruses showed clock-like signals when each variant was analysed separately. A minimal impact on the long-term clock-like evolution of VP1 was detected due to the exchange (recombination) of the polymerase types. The linear evolution, without replacement among variants, is explained by minimal changes at the protein level due to the higher ratio of synonymous compared to non-synonymous substitutions in their evolution. Taken together, these data indicate that (i) the variants of non-GII.4 noroviruses evolve and persist in the population independently, probably due to strong evolutionary constraints on VP1, and (ii) variant-specific analyses with robust sequence databases that cover long periods of surveillance are needed to limit the potential for misinterpretation of the evolutionary dynamics of non-GII.4 noroviruses.
-
-
-
Evaluation of antiviral efficacy of Chinese traditional medicine Babao Dan in rabbits infected with hepatitis E virus
Hepatitis E virus (HEV) is a major cause of acute viral hepatitis. Patients with chronic hepatitis B superinfected with HEV may progress to liver failure. Babao Dan (BD) is a traditional Chinese medicine widely used as an auxiliary option for the treatment of chronic hepatitis and liver cancer in China. This study aimed to evaluate the effect of BD on the management of HEV infection in a rabbit model. Sixty-two specific-pathogen-free (SPF) rabbits were divided randomly into five groups and treated with BD or placebo for 2 weeks. All rabbits were inoculated intravenously with rabbit HEV after initial administration. Then, rabbits were administered BD or ribavirin or placebo at 2 weeks post-inoculation (wpi) until faecal virus shedding showed negative. The duration of faecal virus shedding and levels of HEV RNA in faeces were reduced, and anti-HEV antibodies were detected in all rabbits in groups treated with BD before or after inoculation. Ribavirin treatment rapidly cleared HEV infection in SPF rabbits, but anti-HEV antibodies remained negative in 50 % of rabbits treated with ribavirin. These results indicate that ribavirin treatment was more effective in clearing HEV infection, while administration of BD before or after inoculation was effective in clearing HEV infection. Further clinical studies are warranted.
-
-
-
A single amino acid substitution in the NS4B protein of Dengue virus confers enhanced virus growth and fitness in human cells in vitro through IFN-dependent host response
Dengue virus (DENV) replication between mosquito and human hosts is hypothesized to be associated with viral determinants that interact in a differential manner between hosts. However, the understanding of inter-host viral determinants that drive DENV replication and growth between hosts is limited. Through the use of clinical isolates, we identified an amino acid variation of Ala, Met and Val at position 116 of DENV-1 NS4B. While the proportion of virus with the NS4B-116V variant remained constantly high in serial passages in a mosquito cell line, populations of the NS4B-116M and NS4B-116A variants became dominant after serial passages in mammalian cell lines. Using recombinant DENV-1 viruses, the Val to Ala or Met alteration at position NS4B-116 (rDENV-1-NS4B-116A and rDENV-1-NS4B-116M) resulted in enhanced virus growth in human cells in comparison to the clone with Val at NS4B-116 (rDENV-1-NS4B-116V). However, the reverse phenomenon was observed in a mosquito cell line. Additionally, in a human cell line, differential levels of IFN-α/β and IFN-stimulated gene expressions (IFIT3, IFI44L, OAS1) suggested that the enhanced viral growth was dependent on the ability of the NS4B protein to hamper host IFN response during the early phase of infection. Overall, we identified a novel and critical viral determinant at the pTMD3 of NS4B region that displayed differential effects on DENV replication and fitness in human and mosquito cell lines. Taken together, the results suggest the importance of the NS4B protein in virus replication and adaptation between hosts.
-
-
-
Limitations of daclatasvir/asunaprevir plus beclabuvir treatment in cases of NS5A inhibitor treatment failure
Combined daclatasvir (DCV)/asunaprevir (ASV) plus beclabuvir (BCV) treatment shows a high virological response for genotype 1b chronic hepatitis C patients. However, its efficacy for patients for whom previous direct-acting antiviral (DAA) therapy failed is not known. We analysed the efficacy of DCV/ASV/BCV treatment for HCV-infected mice and chronic hepatitis patients. Human hepatocyte chimaeric mice were injected with serum samples obtained from either a DAA-naïve patient or a DCV/ASV treatment failure and were then treated with DCV/ASV alone or in combination with BCV for 4 weeks. DCV/ASV treatment successfully eliminated the virus in DAA-naïve-patient HCV-infected mice. DCV/ASV treatment failure HCV-infected mice developed viral breakthrough during DCV/ASV treatment, with the emergence of NS5A-L31V/Y93H HCV resistance-associated variants (RAVs) being observed by direct sequencing. DCV/ASV/BCV treatment inhibited viral breakthrough in NS5A-L31V/Y93H-mutated HCV-infected mice, but HCV relapsed with the emergence of NS5B-P495S variants after the cessation of the treatment. The efficacy of the triple therapy was also analysed in HCV-infected patients; one DAA-naïve patient and four prior DAA treatment failures were treated with 12 weeks of DCV/ASV/BCV therapy. Sustained virological response was achieved in a DAA-naïve patient and one of the DCV/ASV treatment failures through DCV/ASV/BCV therapy; however, HCV relapse occurred in the other patients with prior DCV/ASV and/or sofosbuvir/ledipasvir treatment failures. DCV/ASV/BCV therapy seems to have limited efficacy for patients with NS5A RAVs for whom prior DAA treatment has failed.
-
-
-
Ribavirin-induced mutagenesis across the complete open reading frame of hepatitis C virus genotypes 1a and 3a
More LessRibavirin (RBV) has been used for the last 20 years to treat patients with chronic hepatitis C virus (HCV) infection. This pluripotent drug is believed to induce mutagenesis in HCV RNA. However, for cell-cultured HCV (HCVcc) this phenomenon has only been investigated in genotype 2a recombinants. Here we studied the mutations that developed in HCVcc of genotypes 1a and 3a treated with RBV or ribavirin triphosphate (RBV-TP) compared to non-treated controls. Analysis was performed on the amplified full-length open reading frame (ORF) of recovered viruses following next-generation sequencing and clonal analyses. Compared to non-treated controls, the spread of TNcc(1a) and DBN3acc(3a) HCVcc was delayed by RBV and RBV-TP at concentrations of 40 µM or higher. The delay in HCVcc spread was associated with increased new single-nucleotide polymorphisms (SNP). Significantly higher numbers of new SNP were observed in TNcc(1a) viruses treated with RBV or RBV-TP compared to matched non-treated controls. RBV or RBV-TP treatment led to significantly increased proportions of new G-to-A and C-to-U SNP compared to non-treated TNcc(1a). Clonal analyses confirmed a significantly increased mutation rate in RBV-treated TNcc(1a). Synonymous pairwise distances increased in both viruses across the complete ORF under RBV and RBV-TP treatment compared to controls. Consensus-shifts in single samples of RBV- or RBV-TP-treated TNcc(1a) viruses occurred in proteins E1, p7, NS3 and NS4B. No non-synonymous consensus changes were observed in DBN3acc(3a). This study supports a biased G-to-A and C-to-U mutagenic effect of RBV and RBV-TP throughout the entire ORF of HCV genotypes 1a and 3a.
-
-
-
Long-term stability of antibody responses elicited by Dengue virus envelope DIII-based DNA vaccines
More LessDengue virus (DENV) is one the most important viral pathogens worldwide. Currently there is an imperative need for a reliable vaccine capable of inducing durable protection against all four serotypes. We have previously reported strongly neutralizing and highly specific antibody responses from all four serotypes to a DNA vaccine based on an engineered version of DENV E protein’s domain III (DIII). Here, we show that monovalent and tetravalent immunizations with the DIII-based DNA vaccines are also capable of inducing highly stable antibody responses that remain strongly neutralizing over long periods of time. Our results demonstrate that DNA-vaccinated mice maintain a strong antibody response in terms of titre, avidity and virus-neutralizing capability 1 year after immunization.
-
-
-
Investigation of the role of GBF1 in the replication of positive-sense single-stranded RNA viruses
GBF1 has emerged as a host factor required for the replication of positive-sense single-stranded RNA viruses of different families, but its mechanism of action is still unknown. GBF1 is a guanine nucleotide exchange factor for Arf family members. Recently, we identified Arf4 and Arf5 (class II Arfs) as host factors required for the replication of hepatitis C virus (HCV), a GBF1-dependent virus. To assess whether a GBF1/class II Arf pathway is conserved among positive-sense single-stranded RNA viruses, we investigated yellow fever virus (YFV), Sindbis virus (SINV), coxsackievirus B4 (CVB4) and human coronavirus 229E (HCoV-229E). We found that GBF1 is involved in the replication of these viruses. However, using siRNA or CRISPR-Cas9 technologies, it was seen that the depletion of Arf1, Arf3, Arf4 or Arf5 had no impact on viral replication. In contrast, the depletion of Arf pairs suggested that class II Arfs could be involved in HCoV-229E, YFV and SINV infection, as for HCV, but not in CVB4 infection. In addition, another Arf pair, Arf1 and Arf4, appears to be essential for YFV and SINV infection, but not for infection by other viruses. Finally, CVB4 infection was not inhibited by any combination of Arf depletion. We conclude that the mechanism of action of GBF1 in viral replication appears not to be conserved, and that a subset of positive-sense single-stranded RNA viruses from different families might require class II Arfs for their replication.
-
-
-
The ADRP domain from a virulent strain of infectious bronchitis virus is not sufficient to confer a pathogenic phenotype to the attenuated Beaudette strain
More LessThe replicase gene of the coronavirus infectious bronchitis virus (IBV) encodes 15 non-structural proteins (nsps). Nsp 3 is a multi-functional protein containing a conserved ADP-ribose-1″-phosphatase (ADRP) domain. The crystal structures of the domain from two strains of IBV, M41 (virulent) and Beaudette (avirulent), identified a key difference; M41 contains a conserved triple-glycine motif, whilst Beaudette contains a glycine-to-serine mutation that is predicted to abolish ADRP activity. Although ADRP activity has not been formally demonstrated for IBV nsp 3, Beaudette fails to bind ADP-ribose. The role of ADRP in virulence was investigated by generating rIBVs, based on Beaudette, containing either a restored triple-glycine motif or the complete M41 ADRP domain. Replication in vitro was unaffected by the ADRP modifications and the in vivo phenotype of the rIBVs was found to be apathogenic, indicating that restoration of the triple-glycine motif is not sufficient to restore virulence to the apathogenic Beaudette strain.
-
- Small DNA Virus
-
-
Molecular characterization of hepatitis B virus (HBV) in African children living in Australia identifies genotypes and variants associated with poor clinical outcome
Migration from sub-Saharan Africa is contributing to the rising incidence of chronic hepatitis B (CHB) infection and its complications in Australia. African CHB is associated with unique genotypes, such as E and A1, which are associated with reduced vaccine efficacy and early-onset hepatocellular carcinoma, respectively, although the prevalence of these genotypes outside Africa is poorly described. Treatment-naïve children of African origin with CHB were recruited at the Royal Children’s Hospital Melbourne. Population-based sequencing of the complete HBV genome, or the clinically relevant basal core promoter (BCP)/precore (PC) region, was performed, and the HBV genotype/subgenotype assigned by phylogenetic analysis. HBV was characterized in serum from 67 children, median age 12.5 years. HBV genotype E was most frequent (70 %), with genotype D [25 %; subgenotypes D6 (formerly D7)/D3/D2)] and subgenotype A1 (5 %) also being identified. Despite their young age, over 50 % of the children were HBeAg-negative and had seroconverted to anti-HBe, with this being associated with canonical BCP/PC mutations in the majority of cases. The profile of HBV in African children living in Australia was characterized by early HBeAg seroconversion and infection with HBV variants associated with poor clinical outcome, as well as genotypes previously associated with reduced vaccine efficacy or rapid progression to liver cancer. These findings have important ramifications for patient monitoring and treatment guidelines in the Australian paediatric setting.
-
- Large DNA Viruses
-
-
Transcriptome profiling of alphaherpesvirus-infected cells treated with the HIV-integrase inhibitor raltegravir reveals profound and specific alterations in host transcription
More LessAnti-microbial compounds typically exert their action by directly interfering with one or more stages of the pathogen’s life cycle. However, some compounds also have secondary effects on the host that aid in pathogen clearance. Raltegravir is a human immunodeficiency virus (HIV)-integrase inhibitor that has been shown to alter the host immune response to HIV in addition to its direct antiviral effect. Interestingly, raltegravir can also directly inhibit the replication of various herpesviruses. However, the host-targeted effects of this drug in the context of a herpesvirus infection have not been explored. Here, we used felid alphaherpesvirus 1 (FHV-1), a close relative of human alphaherpesvirus 1 (HHV-1) that similarly causes ocular herpes, to characterize the host-targeted effects of raltegravir on corneal epithelial cells during an alphaherpesvirus infection. Using RNA deep sequencing, we found that raltegravir specifically boosts the expression of anti-angiogenic factors and promotes metabolic homeostasis in FHV-1-infected cells. In contrast, few changes in host gene transcription were found in uninfected cells. Importantly, we were able to demonstrate that these effects were specific to raltegravir and independent of the direct-acting antiviral effect of the drug, since treatment with the DNA polymerase inhibitor phosphonoacetic acid did not induce these host-targeted effects. Taken together, these results indicate that raltegravir has profound and specific effects on the host transcription profile of herpesvirus-infected cells that may contribute to the overall antiviral activity of the drug and could provide therapeutic benefits in vivo. Furthermore, this study provides a framework for future efforts evaluating the host-targeted effects of anti-microbial compounds.
-
- Insect
-
- RNA Viruses
-
-
Viruses of invasive Argentine ants from the European Main supercolony: characterization, interactions and evolution
More LessThe Argentine ant (Linepithema humile) is a highly invasive pest, yet very little is known about its viruses. We analysed individual RNA-sequencing data from 48 Argentine ant queens to identify and characterisze their viruses. We discovered eight complete RNA virus genomes – all from different virus families – and one putative partial entomopoxvirus genome. Seven of the nine virus sequences were found from ant samples spanning 7 years, suggesting that these viruses may cause long-term infections within the super-colony. Although all nine viruses successfully infect Argentine ants, they have very different characteristics, such as genome organization, prevalence, loads, activation frequencies and rates of evolution. The eight RNA viruses constituted in total 23 different virus combinations which, based on statistical analysis, were non-random, suggesting that virus compatibility is a factor in infections. We also searched for virus sequences from New Zealand and Californian Argentine ant RNA-sequencing data and discovered that many of the viruses are found on different continents, yet some viruses are prevalent only in certain colonies. The viral loads described here most probably present a normal asymptomatic level of infection; nevertheless, detailed knowledge of Argentine ant viruses may enable the design of viral biocontrol methods against this pest.
-
- Prokaryotic Viruses
-
-
-
Detecting viral genomes in the female urinary microbiome
More LessViruses are the most abundant component of the human microbiota. Recent evidence has uncovered a rich diversity of viruses within the female bladder, including both bacteriophages and eukaryotic viruses. We conducted whole-genome sequencing of the bladder microbiome of 30 women: 10 asymptomatic ‘healthy’ women and 20 women with an overactive bladder. These metagenomes include sequences representative of human, bacterial and viral DNA. This analysis, however, focused specifically on viral sequences. Using the bioinformatic tool virMine, we discovered sequence fragments, as well as complete genomes, of bacteriophages and the eukaryotic virus JC polyomavirus. The method employed here is a critical proof of concept: the genomes of viral populations within the low-biomass bladder microbiota can be reconstructed through whole-genome sequencing of the entire microbial community.
-
-
Volumes and issues
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)