1887

Abstract

Tembusu virus (TMUV, genus Flavivirus, family Flaviviridae) was first isolated in 1955 from Culex tritaeniorhynchus mosquitoes in Kuala Lumpur, Malaysia. In April 2010, duck TMUV was first identified as the causative agent of egg-drop syndrome, characterized by a substantial decrease in egg laying and depression, growth retardation and neurological signs or death in infected egg-laying and breeder ducks, in the People’s Republic of China. Since 2010, duck TMUV has spread to most of the duck-producing regions in China, including many of the coastal provinces, neighbouring regions and certain Southeast Asia areas (i.e. Thailand and Malaysia). This review describes the current understanding of the genome characteristics, host range, transmission, epidemiology, phylogenetic and immune evasion of avian-origin TMUV and the innate immune response of the host.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000908
2017-09-06
2019-08-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/98/10/2413.html?itemId=/content/journal/jgv/10.1099/jgv.0.000908&mimeType=html&fmt=ahah

References

  1. US Army Medical Research Unit (Malaya) Institute for Medical Research, Federation of Malaya Annual Report. Kuala Lampur, Malaya: 1957; 100– 103
  2. Gubler DJ. The global emergence/resurgence of arboviral diseases as public health problems. Arch Med Res 2002; 33: 330– 342 [CrossRef] [PubMed]
    [Google Scholar]
  3. Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J et al. Dengue: a continuing global threat. Nat Rev Microbiol 2010; 8: S7– S16 [CrossRef] [PubMed]
    [Google Scholar]
  4. Hayes EB, Sejvar JJ, Zaki SR, Lanciotti RS, Bode AV et al. Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg Infect Dis 2005; 11: 1174– 1179 [CrossRef] [PubMed]
    [Google Scholar]
  5. Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 1999; 286: 2333– 2337 [CrossRef] [PubMed]
    [Google Scholar]
  6. Barnard BJ, Buys SB, Du Preez JH, Greyling SP, Venter HJ. Turkey meningo-encephalitis in South Africa. Onderstepoort J Vet Res 1980; 47: 89– 94 [PubMed]
    [Google Scholar]
  7. Gould EA, Solomon T. Pathogenic flaviviruses. Lancet 2008; 371: 500– 509 [CrossRef] [PubMed]
    [Google Scholar]
  8. Swayne DE, Beck JR, Smith CS, Shieh WJ, Zaki SR. Fatal encephalitis and myocarditis in young domestic geese (Anser anser domesticus) caused by West Nile virus. Emerg Infect Dis 2001; 7: 751– 753 [CrossRef] [PubMed]
    [Google Scholar]
  9. Kono Y, Tsukamoto K, Abd Hamid M, Darus A, Lian TC et al. Encephalitis and retarded growth of chicks caused by Sitiawan virus, a new isolate belonging to the genus Flavivirus. Am J Trop Med Hyg 2000; 63: 94– 101 [CrossRef] [PubMed]
    [Google Scholar]
  10. Becker N, Jöst H, Ziegler U, Eiden M, Höper D et al. Epizootic emergence of Usutu virus in wild and captive birds in Germany. PLoS One 2012; 7: e32604 [CrossRef] [PubMed]
    [Google Scholar]
  11. Weissenböck H, Kolodziejek J, Url A, Lussy H, Rebel-Bauder B et al. Emergence of Usutu virus, an African mosquito-borne Flavivirus of the Japanese encephalitis virus group, central Europe. Emerg Infect Dis 2002; 8: 652– 656 [CrossRef] [PubMed]
    [Google Scholar]
  12. Agüero M, Fernández-Pinero J, Buitrago D, Sánchez A, Elizalde M et al. Bagaza virus in partridges and pheasants, Spain, 2010. Emerg Infect Dis 2011; 17: 1498– 1501 [CrossRef] [PubMed]
    [Google Scholar]
  13. Su J, Li S, Hu X, Yu X, Wang Y et al. Duck egg-drop syndrome caused by BYD virus, a new Tembusu-related flavivirus. PLoS One 2011; 6: e18106 18805 [CrossRef] [PubMed]
    [Google Scholar]
  14. Baltimore D. Expression of animal virus genomes. Bacteriol Rev 1971; 35: 235– 241 [PubMed]
    [Google Scholar]
  15. Liu M, Liu C, Li G, Li X, Yin X et al. Complete genomic sequence of duck flavivirus from china. J Virol 2012; 86: 3398– 3399 [CrossRef] [PubMed]
    [Google Scholar]
  16. Liu P, Lu H, Li S, Moureau G, Deng YQ et al. Genomic and antigenic characterization of the newly emerging Chinese duck egg-drop syndrome flavivirus: genomic comparison with Tembusu and Sitiawan viruses. J Gen Virol 2012; 93: 2158– 2170 [CrossRef] [PubMed]
    [Google Scholar]
  17. Tang Y, Diao Y, Gao X, Yu C, Chen L et al. Analysis of the complete genome of Tembusu virus, a Flavivirus isolated from ducks in China. Transbound Emerg Dis 2012; 59: 336– 343 [CrossRef] [PubMed]
    [Google Scholar]
  18. Yun T, Ye W, Ni Z, Zhang D, Zhang C. Identification and molecular characterization of a novel flavivirus isolated from Pekin ducklings in China. Vet Microbiol 2012; 157: 311– 319 [CrossRef] [PubMed]
    [Google Scholar]
  19. Yun T, Zhang D, Ma X, Cao Z, Chen L et al. Complete genome sequence of a novel flavivirus, duck Tembusu virus, isolated from ducks and geese in China. J Virol 2012; 86: 3406– 3407 [CrossRef] [PubMed]
    [Google Scholar]
  20. Zhu W, Chen J, Wei C, Wang H, Huang Z et al. Complete genome sequence of duck Tembusu virus, isolated from Muscovy ducks in southern China. J Virol 2012; 86: 13119 [CrossRef] [PubMed]
    [Google Scholar]
  21. Han K, Huang X, Li Y, Zhao D, Liu Y et al. Complete genome sequence of goose Tembusu virus, isolated from jiangnan white geese in jiangsu, China. Genome Announc 2013; 1: e00236-12 e0023612 [CrossRef] [PubMed]
    [Google Scholar]
  22. Liu M, Chen S, Chen Y, Liu C, Chen S et al. Adapted Tembusu-like virus in chickens and geese in China. J Clin Microbiol 2012; 50: 2807– 2809 [CrossRef]
    [Google Scholar]
  23. Zhou H, Yan B, Chen S, Wang M, Jia R et al. Evolutionary characterization of Tembusu virus infection through identification of codon usage patterns. Infect Genet Evol 2015; 35: 27– 33 [CrossRef] [PubMed]
    [Google Scholar]
  24. Tang Y, Gao X, Diao Y, Feng Q, Chen H et al. Tembusu virus in human, China. Transbound Emerg Dis 2013; 60: 193– 196 [CrossRef]
    [Google Scholar]
  25. Petz LN, Turell MJ, Padilla S, Long LS, Reinbold-Wasson DD et al. Development of conventional and real-time reverse transcription polymerase chain reaction assays to detect Tembusu virus in culextarsalis mosquitoes. Am J Trop Med Hyg 2014; 91: 666– 671 [CrossRef] [PubMed]
    [Google Scholar]
  26. Tang Y, Diao Y, Chen H, Ou Q, Liu X et al. Isolation and genetic characterization of a Tembusu virus strain isolated from mosquitoes in Shandong, China. Transbound Emerg Dis 2015; 62: 209– 216 [CrossRef] [PubMed]
    [Google Scholar]
  27. Wang HJ, Li XF, Liu L, Xu YP, Ye Q et al. The emerging duck Flavivirus is not pathogenic for primates and is highly sensitive to mammalian interferon antiviral signaling. J Virol 2016; 90: 6538– 6548 [CrossRef] [PubMed]
    [Google Scholar]
  28. Li S, Li X, Zhang L, Wang Y, Yu X et al. Duck Tembusu virus exhibits neurovirulence in BALB/c mice. Virol J 2013; 10: 260– 267 [CrossRef] [PubMed]
    [Google Scholar]
  29. O'Guinn ML, Turell MJ, Kengluecha A, Jaichapor B, Kankaew P et al. Field detection of Tembusu virus in western Thailand by RT-PCR and vector competence determination of select culex mosquitoes for transmission of the virus. Am J Trop Med Hyg 2013; 89: 1023– 1028 [CrossRef] [PubMed]
    [Google Scholar]
  30. Gould EA, De Lamballerie X, Zanotto PM, Holmes EC, Chambers TJ. Origins, evolution, and vector/host coadaptations within the genus Flavivirus. Adv Virus Res 2003; 59: 277– 314 [PubMed] [Crossref]
    [Google Scholar]
  31. Ti J, Zhang M, Li Z, Li X, Diao Y et al. Duck Tembusu virus exhibits pathogenicity to kunming mice by intracerebral inoculation. Front Microbiol 2016; 7: 190 [CrossRef] [PubMed]
    [Google Scholar]
  32. Tang Y, Diao Y, Yu C, Gao X, Ju X et al. Characterization of a Tembusu virus isolated from naturally infected house sparrows (Passer domesticus) in Northern China. Transbound Emerg Dis 2013; 60: 152– 158 [CrossRef] [PubMed]
    [Google Scholar]
  33. Hamer GL, Walker ED, Brawn JD, Loss SR, Ruiz MO et al. Rapid amplification of West Nile virus: the role of hatch-year birds. Vector Borne Zoonotic Dis 2008; 8: 57– 68 [CrossRef] [PubMed]
    [Google Scholar]
  34. Austin RJ, Whiting TL, Anderson RA, Drebot MA. An outbreak of West Nile virus-associated disease in domestic geese (Anser anser domesticus) upon initial introduction to a geographic region, with evidence of bird to bird transmission. Can Vet J 2004; 45: 117– 123 [PubMed]
    [Google Scholar]
  35. Li L, An H, Sun M, Dong J, Yuan J et al. Identification and genomic analysis of two duck-origin Tembusu virus strains in Southern China. Virus Genes 2012; 45: 105– 112 [CrossRef] [PubMed]
    [Google Scholar]
  36. Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 1990; 44: 649– 688 [CrossRef] [PubMed]
    [Google Scholar]
  37. Yu K, Sheng ZZ, Huang B, Ma X, Li Y et al. Structural, antigenic, and evolutionary characterizations of the envelope protein of newly emerging Duck Tembusu Virus. PLoS One 2013; 8: e71319 e71906 [CrossRef] [PubMed]
    [Google Scholar]
  38. Zhu K, Huang J, Jia R, Zhang B, Wang M et al. Identification and molecular characterization of a novel duck Tembusu virus isolate from Southwest China. Arch Virol 2015; 160: 2781– 2790 [CrossRef] [PubMed]
    [Google Scholar]
  39. Wallace HG, Rudnick A, Rajagopal V et al. Activity of Tembusu and Umbre viruses in a Malaysian community: mosquito studies. Mosq News 1977; 37: 35– 42
    [Google Scholar]
  40. Homonnay ZG, Kovács EW, Bányai K, Albert M, Fehér E et al. Tembusu-like Flavivirus (Perak virus) as the cause of neurological disease outbreaks in young Pekin ducks. Avian Pathol 2014; 43: 552– 560 [CrossRef] [PubMed]
    [Google Scholar]
  41. Leake CJ, Ussery MA, Nisalak A, Hoke CH, Andre RG et al. Virus isolations from mosquitoes collected during the 1982 Japanese encephalitis epidemic in Northern Thailand. Trans R Soc Trop Med Hyg 1986; 80: 831– 837 [CrossRef] [PubMed]
    [Google Scholar]
  42. Pandey BD, Karabatsos N, Cropp B, Tagaki M, Tsuda Y et al. Identification of a Flavivirus isolated from mosquitos in Chiang Mai Thailand. Southeast Asian J Trop Med Public Health 1999; 30: 161– 165 [PubMed]
    [Google Scholar]
  43. Thontiravong A, Ninvilai P, Tunterak W, Nonthabenjawan N, Chaiyavong S et al. Tembusu-related Flavivirus in ducks, Thailand. Emerg Infect Dis 2015; 21: 2164– 2167 [CrossRef] [PubMed]
    [Google Scholar]
  44. Fu G, Chen C, Huang Y, Cheng L, Fu Q et al. Comparative analysis of transcriptional profiles of retinoic-acid-induced gene I-like receptors and interferons in seven tissues from ducks infected with avian Tembusu virus. Arch Virol 2016; 161: 11– 18 [CrossRef] [PubMed]
    [Google Scholar]
  45. Li N, Wang Y, Li R, Liu J, Zhang J et al. Immune responses of ducks infected with duck Tembusu virus. Front Microbiol 2015; 6: 425 [CrossRef] [PubMed]
    [Google Scholar]
  46. Zhou H, Chen S, Wang M, Jia R, Zhu D et al. Antigen distribution of TMUV and GPV are coincident with the expression profiles of CD8α-positive cells and goose IFNγ. Sci Rep 2016; 6: 25545 [CrossRef] [PubMed]
    [Google Scholar]
  47. Chen S, Luo G, Yang Z, Lin S, Chen S et al. Avian Tembusu virus infection effectively triggers host innate immune response through MDA5 and TLR3-dependent signaling pathways. Vet Res 2016; 47: 74 [CrossRef] [PubMed]
    [Google Scholar]
  48. Han K, Zhao D, Liu Y, Liu Q, Huang X et al. Quantitative proteomic analysis of duck ovarian follicles infected with duck Tembusu virus by label-free LC-MS. Front Microbiol 2016; 7: 463 [CrossRef] [PubMed]
    [Google Scholar]
  49. Zhang B, Liu X, Chen W, Chen L. IFIT5 potentiates anti-viral response through enhancing innate immune signaling pathways. Acta Biochim Biophys Sin 2013; 45: 867– 874 [CrossRef] [PubMed]
    [Google Scholar]
  50. Kristiansen H, Gad HH, Eskildsen-Larsen S, Despres P, Hartmann R. The oligoadenylate synthetase family: an ancient protein family with multiple antiviral activities. J Interferon Cytokine Res 2011; 31: 41– 47 [CrossRef] [PubMed]
    [Google Scholar]
  51. Deo S, Patel TR, Dzananovic E, Booy EP, Zeid K et al. Activation of 2' 5'-oligoadenylate synthetase by stem loops at the 5'-end of the West Nile virus genome. PLoS One 2014; 9: e92545 [CrossRef] [PubMed]
    [Google Scholar]
  52. Zhu J, Ghosh A, Sarkar SN. OASL-a new player in controlling antiviral innate immunity. Curr Opin Virol 2015; 12: 15– 19 [CrossRef] [PubMed]
    [Google Scholar]
  53. Kjaer KH, Poulsen JB, Reintamm T, Saby E, Martensen PM et al. Evolution of the 2'-5'-oligoadenylate synthetase family in eukaryotes and bacteria. J Mol Evol 2009; 69: 612– 624 [CrossRef] [PubMed]
    [Google Scholar]
  54. Yamamoto A, Iwata A, Koh Y, Kawai S, Murayama S et al. Two types of chicken 2',5'-oligoadenylate synthetase mRNA derived from alleles at a single locus. Biochim Biophys Acta 1998; 1395: 181– 191 [CrossRef] [PubMed]
    [Google Scholar]
  55. Yang C, Liu F, Chen S, Wang M, Jia R et al. Identification of 2'-5'-oligoadenylate synthetase-like gene in goose: Gene structure, expression patterns, and antiviral activity against newcastle disease virus. J Interferon Cytokine Res 2016; 36: 563– 572 [CrossRef] [PubMed]
    [Google Scholar]
  56. Mashimo T, Simon-Chazottes D, Guénet JL. Innate resistance to Flavivirus infections and the functions of 2'-5' oligoadenylate synthetases. Curr Top Microbiol Immunol 2008; 321: 85– 100 [PubMed]
    [Google Scholar]
  57. Lin RJ, Yu HP, Chang BL, Tang WC, Liao CL et al. Distinct antiviral roles for human 2',5'-oligoadenylate synthetase family members against dengue virus infection. J Immunol 2009; 183: 8035– 8043 [CrossRef] [PubMed]
    [Google Scholar]
  58. Courtney SC, di H, Stockman BM, Liu H, Scherbik SV et al. Identification of novel host cell binding partners of Oas1b, the protein conferring resistance to flavivirus-induced disease in mice. J Virol 2012; 86: 7953– 7963 [CrossRef] [PubMed]
    [Google Scholar]
  59. Tag-El-Din-Hassan HT, Sasaki N, Torigoe D, Morimatsu M, Agui T. Analysis of the relationship between enzymatic and antiviral activities of the chicken oligoadenylate synthetase-like. J Interferon Cytokine Res 2017; 37: 71– 80 [CrossRef] [PubMed]
    [Google Scholar]
  60. Taguchi T, Nagano-Fujii M, Akutsu M, Kadoya H, Ohgimoto S et al. Hepatitis C virus NS5A protein interacts with 2',5'-oligoadenylate synthetase and inhibits antiviral activity of IFN in an IFN sensitivity-determining region-independent manner. J Gen Virol 2004; 85: 959– 969 [CrossRef] [PubMed]
    [Google Scholar]
  61. Arjona A, Ledizet M, Anthony K, Bonafé N, Modis Y et al. West Nile virus envelope protein inhibits dsRNA-induced innate immune responses. J Immunol 2007; 179: 8403– 8409 [CrossRef] [PubMed]
    [Google Scholar]
  62. Muñoz-Jordán JL, Laurent-Rolle M, Ashour J, Martínez-Sobrido L, Ashok M et al. Inhibition of alpha/beta interferon signaling by the NS4B protein of Flaviviruses. J Virol 2005; 79: 8004– 8013 [CrossRef] [PubMed]
    [Google Scholar]
  63. Muñoz-Jordan JL, Sánchez-Burgos GG, Laurent-Rolle M, García-Sastre A. Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci USA 2003; 100: 14333– 14338 [CrossRef] [PubMed]
    [Google Scholar]
  64. Rastogi M, Sharma N, Singh SK. Flavivirus NS1: a multifaceted enigmatic viral protein. Virol J 2016; 13: 131 [CrossRef] [PubMed]
    [Google Scholar]
  65. Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E et al. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 2004; 10: 1366– 1373 [CrossRef] [PubMed]
    [Google Scholar]
  66. Crook KR, Miller-Kittrell M, Morrison CR, Scholle F. Modulation of innate immune signaling by the secreted form of the West Nile virus NS1 glycoprotein. Virology 2014; 458-459: 172– 182 [CrossRef] [PubMed]
    [Google Scholar]
  67. Wilson JR, De Sessions PF, Leon MA, Scholle F. West Nile virus nonstructural protein 1 inhibits TLR3 signal transduction. J Virol 2008; 82: 8262– 8271 [CrossRef] [PubMed]
    [Google Scholar]
  68. Baronti C, Sire J, De Lamballerie X, Quérat G. Nonstructural NS1 proteins of several mosquito-borne Flavivirus do not inhibit TLR3 signaling. Virology 2010; 404: 319– 330 [CrossRef] [PubMed]
    [Google Scholar]
  69. Lu Y, Dou Y, Ti J, Wang A, Cheng B, Al CB et al. The effect of Tembusu virus infection in different week-old Cherry Valley breeding ducks. Vet Microbiol 2016; 192: 167– 174 [CrossRef] [PubMed]
    [Google Scholar]
  70. Wang J, Lei CQ, Ji Y, Zhou H, Ren Y et al. Duck Tembusu virus nonstructural protein 1 antagonizes ifn-β signaling pathways by targeting VISA. J Immunol 2016; 197: 4704– 4713 [CrossRef] [PubMed]
    [Google Scholar]
  71. Ti J, Zhang L, Li Z, Zhao D, Zhang Y et al. Effect of age and inoculation route on the infection of duck Tembusu virus in Goslings. Vet Microbiol 2015; 181: 190– 197 [CrossRef] [PubMed]
    [Google Scholar]
  72. Wu L, Liu J, Chen P, Jiang Y, Ding L et al. The sequential tissue distribution of duck Tembusu virus in adult ducks. Biomed Res Int 2014; 2014: 703930 [CrossRef] [PubMed]
    [Google Scholar]
  73. Li S, Zhang L, Wang Y, Wang S, Sun H et al. An infectious full-length cDNA clone of duck Tembusu virus, a newly emerging Flavivirus causing duck egg drop syndrome in China. Virus Res 2013; 171: 238– 241 [CrossRef] [PubMed]
    [Google Scholar]
  74. Liang T, Liu X, Cui S, Qu S, Wang D, Al WD et al. Generation of a reliable full-length cDNA of infectious Tembusu virus using a PCR-based protocol. Virus Res 2016; 213: 255– 259 [CrossRef] [PubMed]
    [Google Scholar]
  75. Wu X, Shi Y, Yan D, Li X, Yan P et al. Development of a PCR-Based Reverse Genetics System for an Attenuated Duck Tembusu Virus Strain. PLoS One 2016; 11: e0156579 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000908
Loading
/content/journal/jgv/10.1099/jgv.0.000908
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error