1887

Abstract

Rift Valley fever virus (RVFV) is a mosquito-borne arbovirus causing severe disease in humans and ruminants. Spread of RVFV out of Africa has raised concerns that it could emerge in Europe or the USA. Virus persistence is dependent on successful infection of, replication in, and transmission to susceptible vertebrate and invertebrate hosts, modulated by virus–host and vector–virus interactions. The principal accepted theory for the long-term maintenance of RVFV involves vertical transmission (VT) of virus to mosquito progeny, with the virus surviving long inter-epizootic periods within the egg. This VT hypothesis, however, is yet to be comprehensively proven. Here, evidence for and against the VT of RVFV is reviewed along with the identification of factors limiting its detection in natural and experimental data. The observations of VT for other arboviruses in the genera , and are discussed within the context of RVFV. The review concludes that VT of RVFV is likely but that current data are insufficient to irrefutably prove this hypothesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000765
2017-05-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/98/5/875.html?itemId=/content/journal/jgv/10.1099/jgv.0.000765&mimeType=html&fmt=ahah

References

  1. Daubney R, Hudson JR, Garnham PC. Enzootic hepatitis or Rift Valley fever. an undescribed virus disease of sheep cattle and man from East Africa. J Pathol Bacteriol 1931;34:545–579 [CrossRef]
    [Google Scholar]
  2. Hoogstraal H, Meegan JM, Khalil GM, Adham FK. The Rift Valley fever epizootic in Egypt 1977-78. 2. Ecological and entomological studies. Trans R Soc Trop Med Hyg 1979;73:624–629 [CrossRef][PubMed]
    [Google Scholar]
  3. Coetzer JA. The pathology of Rift Valley fever. II. Lesions occurring in field cases in adult cattle, calves and aborted foetuses. Onderstepoort J Vet Res 1982;49:11–17[PubMed]
    [Google Scholar]
  4. Bird BH, Ksiazek TG, Nichol ST, Maclachlan NJ. Rift Valley fever virus. J Am Vet Med Assoc 2009;234:883–893 [CrossRef][PubMed]
    [Google Scholar]
  5. Van Velden DJ, Meyer JD, Olivier J, Gear JH, Mcintosh B. Rift Valley fever affecting humans in South Africa: a clinicopathological study. S Afr Med J 1977;51:867–871[PubMed]
    [Google Scholar]
  6. Nicholas DE, Jacobsen KH, Waters NM. Risk factors associated with human Rift Valley fever infection: systematic review and meta-analysis. Trop Med Int Health 2014;19:1420–1429 [CrossRef][PubMed]
    [Google Scholar]
  7. Laughlin LW, Meegan JM, Strausbaugh LJ, Morens DM, Watten RH. Epidemic Rift Valley fever in Egypt: observations of the spectrum of human illness. Trans R Soc Trop Med Hyg 1979;73:630–633 [CrossRef][PubMed]
    [Google Scholar]
  8. Mansfield KL, Banyard AC, Mcelhinney L, Johnson N, Horton DL et al. Rift Valley fever virus: a review of diagnosis and vaccination, and implications for emergence in Europe. Vaccine 2015;33:5520–5531 [CrossRef]
    [Google Scholar]
  9. Knipe DM, Howley P. (editors). Fields Virology PA: Lippincott Williams & Wilkins; 2013
    [Google Scholar]
  10. Brennan B, Welch SR, Elliott RM. The consequences of reconfiguring the ambisense S genome segment of Rift Valley fever virus on viral replication in mammalian and mosquito cells and for genome packaging. PLoS Pathog 2014;10:e1003922 [CrossRef][PubMed]
    [Google Scholar]
  11. Collett MS, Purchio AF, Keegan K, Frazier S, Hays W et al. Complete nucleotide sequence of the M RNA segment of Rift Valley fever virus. Virology 1985;144:228–245 [CrossRef][PubMed]
    [Google Scholar]
  12. Gerrard SR, Nichol ST. Synthesis, proteolytic processing and complex formation of N-terminally nested precursor proteins of the Rift Valley fever virus glycoproteins. Virology 2007;357:124–133 [CrossRef][PubMed]
    [Google Scholar]
  13. Pienaar NJ, Thompson PN. Temporal and spatial history of Rift Valley fever in South Africa: 1950 to 2011. Onderstepoort J Vet Res 2013;80:384 [CrossRef][PubMed]
    [Google Scholar]
  14. Meegan JM. The Rift Valley fever epizootic in Egypt 1977-78. 1. Description of the epizootic and virological studies. Trans R Soc Trop Med Hyg 1979;73:618–623 [CrossRef][PubMed]
    [Google Scholar]
  15. Jouan A, Le Guenno B, Digoutte JP, Philippe B, Riou O et al. An RVF epidemic in southern Mauritania. Ann Inst Pasteur Virol 1988;139:307–308 [CrossRef][PubMed]
    [Google Scholar]
  16. Morvan J, Saluzzo JF, Fontenille D, Rollin PE, Coulanges P. Rift Valley fever on the east coast of Madagascar. Res Virol 1991;142:475–482 [CrossRef][PubMed]
    [Google Scholar]
  17. Carroll SA, Reynes JM, Khristova ML, Andriamandimby SF, Rollin PE et al. Genetic evidence for Rift Valley fever outbreaks in Madagascar resulting from virus introductions from the East African mainland rather than enzootic maintenance. J Virol 2011;85:6162–6167 [CrossRef][PubMed]
    [Google Scholar]
  18. Fontenille D. Arbovirus transmission cycles in Madagascar. Arch Inst Pasteur Madagascar 1989;55:1–317 (in French with English abstract)[PubMed]
    [Google Scholar]
  19. Madani TA, Al-Mazrou YY, Al-Jeffri MH, Mishkhas AA, Al-Rabeah AM et al. Rift Valley fever epidemic in Saudi Arabia: epidemiological, clinical, and laboratory characteristics. Clin Infect Dis 2003;37:1084–1092 [CrossRef][PubMed]
    [Google Scholar]
  20. Al-Afaleq AI, Hussein MF. The status of Rift Valley fever in animals in Saudi Arabia: a mini review. Vector Borne Zoonotic Dis 2011;11:1513–1520 [CrossRef][PubMed]
    [Google Scholar]
  21. Randolph SE, Rogers DJ. The arrival, establishment and spread of exotic diseases: patterns and predictions. Nat Rev Microbiol 2010;8:361–371 [CrossRef][PubMed]
    [Google Scholar]
  22. Gale P, Kelly L, Snary EL. Pathways for entry of livestock arboviruses into Great Britain: assessing the strength of evidence. Transbound Emerg Dis 2015;62:115–123 [CrossRef][PubMed]
    [Google Scholar]
  23. Chevalier V, Pépin M, Plée L, Lancelot R. Rift Valley fever–a threat for Europe?. Euro Surveill 2010;15:19506[PubMed]
    [Google Scholar]
  24. Rolin AI, Berrang-Ford L, Kulkarni MA. The risk of Rift Valley fever virus introduction and establishment in the United States and European Union. Emerg Microbes Infect 2013;2:e81 [CrossRef][PubMed]
    [Google Scholar]
  25. Arsevska E, Hellal J, Mejri S, Hammami S, Marianneau P et al. Identifying areas suitable for the occurrence of Rift Valley fever in North Africa: implications for surveillance. Transbound Emerg Dis 2016;63:658–674 [CrossRef][PubMed]
    [Google Scholar]
  26. Tran A, Ippoliti C, Balenghien T, Conte A, Gely M et al. A geographical information system-based multicriteria evaluation to map areas at risk for Rift Valley fever vector-borne transmission in Italy. Transbound Emerg Dis 2013;60:14–23 [CrossRef][PubMed]
    [Google Scholar]
  27. Fischer EA, Boender GJ, Nodelijk G, de Koeijer AA, van Roermund HJ. The transmission potential of Rift Valley fever virus among livestock in the Netherlands: a modelling study. Vet Res 2013;44:58 [CrossRef][PubMed]
    [Google Scholar]
  28. Sánchez-Vizcaíno F, Martínez-López B, Sánchez-Vizcaíno JM. Identification of suitable areas for the occurrence of Rift Valley fever outbreaks in Spain using a multiple criteria decision framework. Vet Microbiol 2013;165:71–78 [CrossRef][PubMed]
    [Google Scholar]
  29. Breiman RF, Njenga MK, Cleaveland S, Sharif SK, Mbabu M et al. Lessons from the 2006–2007 Rift Valley fever outbreak in East Africa: implications for prevention of emerging infectious diseases. Future Virol 2008;3:411–417 [CrossRef]
    [Google Scholar]
  30. Lorenzo G, López-Gil E, Warimwe GM, Brun A. Understanding Rift Valley fever: contributions of animal models to disease characterization and control. Mol Immunol 2015;66:78–88 [CrossRef][PubMed]
    [Google Scholar]
  31. Terasaki K, Makino S. Interplay between the virus and host in Rift Valley fever pathogenesis. J Innate Immun 2015;7:450–458 [CrossRef][PubMed]
    [Google Scholar]
  32. Olive MM, Goodman SM, Reynes JM. The role of wild mammals in the maintenance of Rift Valley fever virus. J Wildl Dis 2012;48:241–266 [CrossRef][PubMed]
    [Google Scholar]
  33. Ross TM, Bhardwaj N, Bissel SJ, Hartman AL, Smith DR. Animal models of Rift Valley fever virus infection. Virus Res 2012;163:417–423 [CrossRef][PubMed]
    [Google Scholar]
  34. Ikegami T. Molecular biology and genetic diversity of Rift Valley fever virus. Antiviral Res 2012;95:293–310 [CrossRef][PubMed]
    [Google Scholar]
  35. Pepin M, Bouloy M, Bird BH, Kemp A, Paweska J. Rift Valley fever virus (Bunyaviridae: Phlebovirus): an update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. Vet Res 2010;41:61 [CrossRef][PubMed]
    [Google Scholar]
  36. Smithburn KC, Haddow AJ, Gillett JD. Rift Valley fever; isolation of the virus from wild mosquitoes. Br J Exp Pathol 1948;29:107–121[PubMed]
    [Google Scholar]
  37. Lee VH. Isolation of viruses from field populations of Culicoides (Diptera: Ceratopogonidae) in Nigeria. J Med Entomol 1979;16:76–79 [CrossRef][PubMed]
    [Google Scholar]
  38. Turell MJ, Perkins PV. Transmission of Rift Valley fever virus by the sand fly, Phlebotomus duboscqi (Diptera: Psychodidae). Am J Trop Med Hyg 1990;42:185–188[PubMed][CrossRef]
    [Google Scholar]
  39. Fontenille D, Traore-Lamizana M, Diallo M, Thonnon J, Digoutte JP et al. New vectors of Rift Valley fever in West Africa. Emerg Infect Dis 1998;4:289–293 [CrossRef][PubMed]
    [Google Scholar]
  40. Linthicum KJ, Logan TM, Bailey CL, Dohm DJ, Moulton JR. Transstadial and horizontal transmission of Rift Valley fever virus in Hyalomma truncatum. Am J Trop Med Hyg 1989;41:491–496[PubMed][CrossRef]
    [Google Scholar]
  41. EFSA The risk of a Rift Valley fever incursion and its persistence within the community. EFSA J 2005;3:1–128
    [Google Scholar]
  42. Turell MJ, Linthicum KJ, Patrican LA, Davies FG, Kairo A et al. Vector competence of selected African mosquito (Diptera: Culicidae) species for Rift Valley fever virus. J Med Entomol 2008;45:102–108 [CrossRef][PubMed]
    [Google Scholar]
  43. Njenga MK, Paweska J, Wanjala R, Rao CY, Weiner M et al. Using a field quantitative real-time PCR test to rapidly identify highly viremic Rift Valley fever cases. J Clin Microbiol 2009;47:1166–1171 [CrossRef][PubMed]
    [Google Scholar]
  44. Golnar AJ, Turell MJ, Labeaud AD, Kading RC, Hamer GL. Predicting the mosquito species and vertebrate species involved in the theoretical transmission of Rift Valley fever virus in the United States. PLoS Negl Trop Dis 2014;8:e3163 [CrossRef][PubMed]
    [Google Scholar]
  45. Mcintosh BM, Dickinson DB, Santos DI. Rift Valley fever 3. Viraemia in cattle and sheep. J S Afr Vet Assoc 1973;44:167–169
    [Google Scholar]
  46. Turell MJ, Bailey CL, Rossi CA. Increased mosquito feeding on Rift Valley fever virus-infected lambs. Am J Trop Med Hyg 1984;33:1232–1238[PubMed][CrossRef]
    [Google Scholar]
  47. Gargan TP, Bailey CL, Higbee GA, Gad A, El Said S. The effect of laboratory colonization on the vector-pathogen interactions of Egyptian Culex pipiens and Rift Valley fever virus. Am J Trop Med Hyg 1983;32:1154–1163[PubMed][CrossRef]
    [Google Scholar]
  48. Le Coupanec A, Babin D, Fiette L, Jouvion G, Ave P et al. Aedes mosquito saliva modulates Rift Valley fever virus pathogenicity. PLoS Negl Trop Dis 2013;7:e2237 [CrossRef][PubMed]
    [Google Scholar]
  49. Amraoui F, Krida G, Bouattour A, Rhim A, Daaboub J et al. Culex pipiens, an experimental efficient vector of West Nile and Rift Valley fever viruses in the Maghreb region. PLoS One 2012;7:e36757 [CrossRef][PubMed]
    [Google Scholar]
  50. Styer LM, Kent KA, Albright RG, Bennett CJ, Kramer LD et al. Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. PLoS Pathog 2007;3:e132 [CrossRef]
    [Google Scholar]
  51. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. World map of the Köppen-Geiger climate classification updated. Meteorol Z 2006;15:259–263[CrossRef]
    [Google Scholar]
  52. Davies FG, Linthicum KJ, James AD. Rainfall and epizootic Rift Valley fever. Bull World Health Organ 1985;63:941–943[PubMed]
    [Google Scholar]
  53. Lichoti JK, Kihara A, Oriko AA, Okutoyi LA, Wauna JO et al. Detection of Rift Valley fever virus interepidemic activity in some hotspot areas of Kenya by sentinel animal surveillance, 2009–2012. Vet Med Int 2014;2014:1–9 [CrossRef]
    [Google Scholar]
  54. Swanepoel R. Observations on Rift Valley fever virus in Zimbabwe. Contrib Epidemiol Biostat 1981;3:83–91
    [Google Scholar]
  55. Beechler BR, Bengis R, Swanepoel R, Paweska JT, Kemp A et al. Rift Valley fever in Kruger National Park: do buffalo play a role in the inter-epidemic circulation of virus?. Transbound Emerg Dis 2015;62:24–32 [CrossRef][PubMed]
    [Google Scholar]
  56. Jori F, Alexander KA, Mokopasetso M, Munstermann S, Moagabo K et al. Serological evidence of Rift Valley fever virus circulation in domestic cattle and African buffalo in northern Botswana (2010–2011). Front Vet Sci 2015;2:63 [CrossRef][PubMed]
    [Google Scholar]
  57. Lwande OW, Paul GO, Chiyo PI, Ng'ang'a E, Otieno V et al. Spatio-temporal variation in prevalence of Rift Valley fever: a post-epidemic serum survey in cattle and wildlife in Kenya. Infect Ecol Epidemiol 2015;5:30106 [CrossRef][PubMed]
    [Google Scholar]
  58. Swanepoel R, Thomson G, Tustin RC, Coetzer JA. Rift Valley fever. Infectious Diseases of Livestock Oxford, UK: Oxford University Press; 2004; pp.1037–1070
    [Google Scholar]
  59. Linthicum KJ, Britch SC, Anyamba A. Rift Valley fever: an emerging mosquito-borne disease. Annu Rev Entomol 2016;61:395–415 [CrossRef][PubMed]
    [Google Scholar]
  60. Mäckel R. Dambos: a study in morphodynamic activity on the plateau regions of Zambia. Catena 1973;1:327–365 [CrossRef]
    [Google Scholar]
  61. Turell MJ, Reeves WC, Hardy JL, Transovarial HJL. Transovarial and trans-stadial transmission of California encephalitis virus in Aedes dorsalis and Aedes melanimon. Am J Trop Med Hyg 1982;31:1021–1029[PubMed][CrossRef]
    [Google Scholar]
  62. Clements A. The Biology of Mosquitoes: Development, Nutrition and Reproduction V.1 New edition Wallingford: CABI Publishing; 1992
    [Google Scholar]
  63. Anyamba A, Linthicum KJ, Small J, Britch SC, Pak E et al. Prediction, assessment of the Rift Valley fever activity in East and Southern Africa 2006-2008 and possible vector control strategies. Am J Trop Med Hyg 2010;83:43–51 [CrossRef][PubMed]
    [Google Scholar]
  64. Linthicum KJ, Davies FG, Kairo A, Bailey CL. Rift Valley fever virus (family Bunyaviridae, genus Phlebovirus). Isolations from Diptera collected during an inter-epizootic period in Kenya. J Hyg 1985;95:197–209 [CrossRef][PubMed]
    [Google Scholar]
  65. Linthicum KJ, Davies FG, Bailey CL, Kairo A. Mosquito species encountered in a flooded grassland dambo in Kenya. Mosq News 1984;44:228–232
    [Google Scholar]
  66. Linthicum KJ, Davies FG, Bailey CL, Kairo A. Mosquito species succession in a dambo in an East African forest. Mosq News 1983;43:464–470
    [Google Scholar]
  67. Franz AW, Kantor AM, Passarelli AL, Clem RJ. Tissue barriers to arbovirus infection in mosquitoes. Viruses 2015;7:3741–3767 [CrossRef][PubMed]
    [Google Scholar]
  68. Clements AN. The Biology of Mosquitoes: Viral, Arboviral and Bacterial Pathogensvol. 3 Wallingford: CABI Publishing; 2011
    [Google Scholar]
  69. Eldridge BF, Edman J. Medical Entomology: A Textbook on Public Health and Veterinary Problems Caused by Arthropods The Netherlands: Springer Science & Business Media; 2012
    [Google Scholar]
  70. Turell MJ, Gargan TP, Bailey CL. Replication and dissemination of Rift Valley fever virus in Culex pipiens. Am J Trop Med Hyg 1984;33:176–181[PubMed][CrossRef]
    [Google Scholar]
  71. Chamberlain RW, Sudia WD. Mechanism of transmission of viruses by mosquitoes. Annu Rev Entomol 1961;6:371–390 [CrossRef][PubMed]
    [Google Scholar]
  72. Kramer LD, Hardy JL, Presser SB, Houk EJ. Dissemination barriers for western equine encephalomyelitis virus in Culex tarsalis infected after ingestion of low viral doses. Am J Trop Med Hyg 1981;30:190–197[PubMed][CrossRef]
    [Google Scholar]
  73. Turell MJ, Faran ME, Cornet M, Bailey CL. Vector competence of Senegalese Aedes fowleri (Diptera: Culicidae) for Rift Valley fever virus. J Med Entomol 1988;25:262–266 [CrossRef][PubMed]
    [Google Scholar]
  74. Kato N, Mueller CR, Fuchs JF, Mcelroy K, Wessely V et al. Evaluation of the function of a type I peritrophic matrix as a physical barrier for midgut epithelium invasion by mosquito-borne pathogens in Aedes aegypti. Vector Borne Zoonotic Dis 2008;8:701–712 [CrossRef][PubMed]
    [Google Scholar]
  75. Sim S, Jupatanakul N, Dimopoulos G. Mosquito immunity against arboviruses. Viruses 2014;6:4479–4504 [CrossRef][PubMed]
    [Google Scholar]
  76. Romoser WS, Turell MJ, Lerdthusnee K, Neira M, Dohm D et al. Pathogenesis of Rift Valley fever virus in mosquitoes-tracheal conduits & the basal lamina as an extra-cellular barrier. Arch Virol Suppl 2005;89–100[PubMed]
    [Google Scholar]
  77. Crabtree MB, Kent Crockett RJ, Bird BH, Nichol ST, Erickson BR et al. Infection and transmission of Rift Valley fever viruses lacking the NSs and/or NSm genes in mosquitoes: potential role for NSm in mosquito infection. PLoS Negl Trop Dis 2012;6:e1639 [CrossRef][PubMed]
    [Google Scholar]
  78. Reddy JT, Locke M. The size limited penetration of gold particles through insect basal laminae. J Insect Physiol 1990;36:397–407 [CrossRef]
    [Google Scholar]
  79. Romoser WS, Wasieloski LP, Pushko P, Kondig JP, Lerdthusnee K et al. Evidence for arbovirus dissemination conduits from the mosquito (Diptera: Culicidae) midgut. J Med Entomol 2004;41:467–475 [CrossRef][PubMed]
    [Google Scholar]
  80. Rosen L. Further observations on the mechanism of vertical transmission of flaviviruses by Aedes mosquitoes. Am J Trop Med Hyg 1988;39:123–126[PubMed][CrossRef]
    [Google Scholar]
  81. Rosen L. Mechanism of vertical transmission of the dengue virus in mosquitoes. C R Acad Sci III 1987;304:347–350[PubMed]
    [Google Scholar]
  82. Rosen L. Sexual transmission of dengue viruses by Aedes albopictus. Am J Trop Med Hyg 1987;37:398–402[PubMed][CrossRef]
    [Google Scholar]
  83. Turell MJ, Linthicum KJ, Beaman JR. Transmission of Rift Valley fever virus by adult mosquitoes after ingestion of virus as larvae. Am J Trop Med Hyg 1990;43:677–680[PubMed][CrossRef]
    [Google Scholar]
  84. Romoser W. Rift valley fever virus-infected mosquito ova and associated pathology: possible implications for endemic maintenance. Res Rep Trop Med 2011;121:
    [Google Scholar]
  85. Ebert D. The epidemiology and evolution of symbionts with mixed-mode transmission. Annu Rev Ecol Evol Syst 2013;44:623–643 [CrossRef]
    [Google Scholar]
  86. Manore CA, Beechler BR. Inter-epidemic and between-season persistence of Rift Valley fever: vertical transmission or cryptic cycling?. Transbound Emerg Dis 2015;62:13–23 [CrossRef][PubMed]
    [Google Scholar]
  87. Lequime S, Lambrechts L. Vertical transmission of arboviruses in mosquitoes: a historical perspective. Infect Genet Evol 2014;28:681–690 [CrossRef][PubMed]
    [Google Scholar]
  88. Adams B, Boots M. How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model. Epidemics 2010;2:1–10 [CrossRef][PubMed]
    [Google Scholar]
  89. Huang Y-M. A new African species of Aedes (Diptera: Culicidae). Smithsonian Institution, Washington, DC 1985
  90. Mohamed RAEH, Abdelgadir DM, Bashab HM. Transovarian transmission of Rift Valley fever virus by two species of mosquitoes in Khartoum state (Sudan): Aedes vexans (Meigen) and Culex quinquefasciatus (Say). Sudan J Public Health 2013;8:164–170
    [Google Scholar]
  91. Nguku PM, Sharif SK, Mutonga D, Amwayi S, Omolo J et al. An investigation of a major outbreak of Rift Valley fever in Kenya: 2006-2007. Am J Trop Med Hyg 2010;83:5–13 [CrossRef][PubMed]
    [Google Scholar]
  92. Gargan TP, Jupp PG, Novak RJ. Panveld oviposition sites of floodwater Aedes mosquitoes and attempts to detect transovarial transmission of Rift Valley fever virus in South Africa. Med Vet Entomol 1988;2:231–236 [CrossRef][PubMed]
    [Google Scholar]
  93. Ksiazek TG, Hardy JL, Reeves WC. Effect of normal mosquito extracts upon arbovirus recoveries from mosquito pools. Am J Trop Med Hyg 1985;34:578–585[PubMed][CrossRef]
    [Google Scholar]
  94. Turell MJ, Rossi CA, Tammariello RF, Bailey CL. Reduced recovery of Rift Valley fever virus associated with assay of mosquito (Diptera: Culicidae) larval pools. J Med Entomol 1986;23:416–422 [CrossRef][PubMed]
    [Google Scholar]
  95. Mcintosh BM, Jupp PG, dos Santos I, Barnard BJ. Vector studies on Rift Valley fever virus in South Africa. S Afr Med J 1980;58:127–132[PubMed]
    [Google Scholar]
  96. Beckmann JF, Fallon AM. Decapitation improves detection of Wolbachia pipientis (Rickettsiales: Anaplasmataceae) in Culex pipiens (Diptera: Culicidae) mosquitoes by the polymerase chain reaction. J Med Entomol 2012;49:1103–1108 [CrossRef][PubMed]
    [Google Scholar]
  97. Ibrahim MS, Turell MJ, Knauert FK, Lofts RS. Detection of Rift Valley fever virus in mosquitoes by RT-PCR. Mol Cell Probes 1997;11:49–53 [CrossRef][PubMed]
    [Google Scholar]
  98. Turell MJ, Sardelis MR, Dohm DJ, O'Guinn ML. Potential North American vectors of West Nile virus. Ann N Y Acad Sci 2001;951:317–324 [CrossRef][PubMed]
    [Google Scholar]
  99. Meegan JM, Khalil GM, Hoogstraal H, Adham FK. Experimental transmission and field isolation studies implicating Culex pipiens as a vector of Rift Valley fever virus in Egypt. Am J Trop Med Hyg 1980;29:1405–1410[PubMed][CrossRef]
    [Google Scholar]
  100. Romoser WS, Faran ME, Bailey CL, Lerdthusnee K. An immunocytochemical study of the distribution of Rift Valley fever virus in the mosquito Culex pipiens. Am J Trop Med Hyg 1992;46:489–501[PubMed][CrossRef]
    [Google Scholar]
  101. Beaty BJ, Thompson WH. Tropisms of La Crosse virus in Aedes triseriatus (Diptera: Culicidae) following infective blood meals. J Med Entomol 1978;14:499–503 [CrossRef][PubMed]
    [Google Scholar]
  102. Miller BR, Defoliart GR, Yuill TM. Aedes triseriatus and La Crosse virus: lack of infection in eggs of the first ovarian cycle following oral infection of females. Am J Trop Med Hyg 1979;28:897–901[PubMed][CrossRef]
    [Google Scholar]
  103. Agarwal A, Dash PK, Singh AK, Sharma S, Gopalan N et al. Evidence of experimental vertical transmission of emerging novel ECSA genotype of chikungunya virus in Aedes aegypti. PLoS Negl Trop Dis 2014;8:e2990 [CrossRef][PubMed]
    [Google Scholar]
  104. Diallo M, Thonnon J, Fontenille D. Vertical transmission of the yellow fever virus by Aedes aegypti (Diptera, Culicidae): dynamics of infection in F1 adult progeny of orally infected females. Am J Trop Med Hyg 2000;62:151–156[PubMed][CrossRef]
    [Google Scholar]
  105. Turell MJ, Reeves WC, Hardy JL. Evaluation of the efficiency of transovarial transmission of California encephalitis viral strains in Aedes dorsalis and Aedes melanimon. Am J Trop Med Hyg 1982;31:382–388[PubMed][CrossRef]
    [Google Scholar]
  106. Watts DM, Pantuwatana S, Defoliart GR, Yuill TM, Thompson WH. Transovarial transmission of LaCrosse virus (California encephalitis group) in the mosquito, Aedes triseriatus. Science 1973;182:1140–1141 [CrossRef][PubMed]
    [Google Scholar]
  107. Chandler LJ, Blair CD, Beaty BJ. La Crosse virus infection of Aedes triseriatus (Diptera: Culicidae) ovaries before dissemination of virus from the midgut. J Med Entomol 1998;35:567–572 [CrossRef][PubMed]
    [Google Scholar]
  108. Faran ME, Turell MJ, Romoser WS, Routier RG, Gibbs PH et al. Reduced survival of adult Culex pipiens infected with Rift Valley fever virus. Am J Trop Med Hyg 1987;37:403–409[PubMed][CrossRef]
    [Google Scholar]
  109. Turell MJ, Gargan TP, Bailey CL. Culex pipiens (Diptera: Culicidae) morbidity and mortality associated with Rift Valley fever virus infection. J Med Entomol 1985;22:332–337 [CrossRef][PubMed]
    [Google Scholar]
  110. Hardy JL, Rosen L, Reeves WC, Scrivani RP, Presser SB. Experimental transovarial transmission of St. Louis encephalitis virus by Culex and Aedes mosquitoes. Am J Trop Med Hyg 1984;33:166–175[PubMed][CrossRef]
    [Google Scholar]
  111. Nelms BM, Fechter-Leggett E, Carroll BD, Macedo P, Kluh S et al. Experimental and natural vertical transmission of West Nile virus by California Culex (Diptera: Culicidae) mosquitoes. J Med Entomol 2013;50:371–378 [CrossRef][PubMed]
    [Google Scholar]
  112. Beaty BJ, Thompson WH. Delineation of La Crosse virus in developmental stages of transovarially infected Aedes triseriatus. Am J Trop Med Hyg 1976;25:505–512[PubMed][CrossRef]
    [Google Scholar]
  113. Hudson AI, Fleming-Davies AE, Páez DJ, Dwyer G. Genotype-by-genotype interactions between an insect and its pathogen. J Evol Biol 2016;29:2480–2490 [CrossRef][PubMed]
    [Google Scholar]
  114. Fansiri T, Fontaine A, Diancourt L, Caro V, Thaisomboonsuk B et al. Genetic mapping of specific interactions between Aedes aegypti mosquitoes and dengue viruses. PLoS Genet 2013;9:e1003621 [CrossRef][PubMed]
    [Google Scholar]
  115. Lambrechts L, Chevillon C, Albright RG, Thaisomboonsuk B, Richardson JH et al. Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors. BMC Evol Biol 2009;9:160 [CrossRef][PubMed]
    [Google Scholar]
  116. Tun-Lin W, Burkot TR, Kay BH. Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Med Vet Entomol 2000;14:31–37 [CrossRef][PubMed]
    [Google Scholar]
  117. Hardy JL, Rosen L, Kramer LD, Presser SB, Shroyer DA et al. Effect of rearing temperature on transovarial transmission of St. Louis encephalitis virus in mosquitoes. Am J Trop Med Hyg 1980;29:963–968[PubMed][CrossRef]
    [Google Scholar]
  118. Thomas MB, Blanford S. Thermal biology in insect-parasite interactions. Trends Ecol Evol 2003;18:344–350 [CrossRef]
    [Google Scholar]
  119. Zouache K, Fontaine A, Vega-Rua A, Mousson L, Thiberge JM et al. Three-way interactions between mosquito population, viral strain and temperature underlying chikungunya virus transmission potential. Proc Biol Sci 2014;281:20141078 [CrossRef][PubMed]
    [Google Scholar]
  120. Turell MJ, Rossi CA, Bailey CL. Effect of extrinsic incubation temperature on the ability of Aedes taeniorhynchus and Culex pipiens to transmit Rift Valley fever virus. Am J Trop Med Hyg 1985;34:1211–1218[PubMed][CrossRef]
    [Google Scholar]
  121. Kramer LD, Hardy JL, Presser SB. Effect of temperature of extrinsic incubation on the vector competence of Culex tarsalis for western equine encephalomyelitis virus. Am J Trop Med Hyg 1983;32:1130–1139[PubMed][CrossRef]
    [Google Scholar]
  122. Turell MJ. Effect of environmental temperature on the vector competence of Aedes taeniorhynchus for Rift Valley fever and Venezuelan equine encephalitis viruses. Am J Trop Med Hyg 1993;49:672–676[CrossRef]
    [Google Scholar]
  123. Westbrook CJ, Reiskind MH, Pesko KN, Greene KE, Lounibos LP. Larval environmental temperature and the susceptibility of Aedes albopictus Skuse (Diptera: Culicidae) to chikungunya virus. Vector Borne Zoonotic Dis 2010;10:241–247 [CrossRef][PubMed]
    [Google Scholar]
  124. Nayar JK, Rosen L, Knight JW. Experimental vertical transmission of Saint Louis encephalitis virus by Florida mosquitoes. Am J Trop Med Hyg 1986;35:1296–1301[PubMed][CrossRef]
    [Google Scholar]
  125. Baqar S, Hayes CG, Murphy JR, Watts DM. Vertical transmission of West Nile virus by Culex and Aedes species mosquitoes. Am J Trop Med Hyg 1993;48:757–762[PubMed][CrossRef]
    [Google Scholar]
  126. Anderson JF, Main AJ. Importance of vertical and horizontal transmission of West Nile virus by Culex pipiens in the northeastern United States. J Infect Dis 2006;194:1577–1579 [CrossRef][PubMed]
    [Google Scholar]
  127. Rosen L. Overwintering mechanisms of mosquito-borne arboviruses in temperate climates. Am J Trop Med Hyg 1987;37:69S–76S[PubMed][CrossRef]
    [Google Scholar]
  128. Nelms BM, Macedo PA, Kothera L, Savage HM, Reisen WK. Overwintering biology of Culex (Diptera: Culicidae) mosquitoes in the Sacramento Valley of California. J Med Entomol 2013;50:773–790 [CrossRef][PubMed]
    [Google Scholar]
  129. Snow KR, Medlock JM. The potential impact of climate change on the distribution and prevalence of mosquitoes in Britain. J Eur Mosq Control Assoc 2006;21:1–10
    [Google Scholar]
  130. Gale P, Brouwer A, Ramnial V, Kelly L, Kosmider R et al. Assessing the impact of climate change on vector-borne viruses in the EU through the elicitation of expert opinion. Epidemiol Infect 2010;138:214 [CrossRef][PubMed]
    [Google Scholar]
  131. Turell MJ, Bailey CL, Beaman JR. Vector competence of a Houston, Texas strain of Aedes albopictus for Rift Valley fever virus. J Am Mosq Control Assoc 1988;4:94–96[PubMed]
    [Google Scholar]
  132. Jupp PG, Cornel AJ. Vector competence tests with Rift Valley fever virus and five South African species of mosquito. J Am Mosq Control Assoc 1988;4:4–8[PubMed]
    [Google Scholar]
  133. Turell MJ, Britch SC, Aldridge RL, Kline DL, Boohene C et al. Potential for mosquitoes (Diptera: Culicidae) from Florida to transmit Rift Valley fever virus. J Med Entomol 2013;50:1111–1117 [CrossRef][PubMed]
    [Google Scholar]
  134. Gear J, de Meillon B, Le Roux AF, Kofsky R, Innes RR et al. Rift Valley fever in South Africa; a study of the 1953 outbreak in the Orange Free State, with special reference to the vectors and possible reservoir hosts. South Afr Med J Suid-Afr Tydskr Vir Geneeskd 1955;29:514–518
    [Google Scholar]
  135. Gargan TP, Clark GG, Dohm DJ, Turell MJ, Bailey CL. Vector potential of selected North American mosquito species for Rift Valley fever virus. Am J Trop Med Hyg 1988;38:440–446[PubMed][CrossRef]
    [Google Scholar]
  136. Turell MJ, Presley SM, Gad AM, Cope SE, Dohm DJ et al. Vector competence of Egyptian mosquitoes for Rift Valley fever virus. Am J Trop Med Hyg 1996;54:136–139[PubMed][CrossRef]
    [Google Scholar]
  137. Gad AM, Hassan MM, El Said S, Moussa MI, Wood OL. Rift Valley fever virus transmission by different Egyptian mosquito species. Trans R Soc Trop Med Hyg 1987;81:694–698 [CrossRef][PubMed]
    [Google Scholar]
  138. Mcintosh BM, Jupp PG, Santos DI, Rowe AC. Field and laboratory evidence implicating Culex zombaensis and Aedes circumluteolus as vector of Rift Valley fever in coastal South Africa. South Afr J Sci 1983;79:61–64
    [Google Scholar]
  139. Turell MJ. Effect of environmental temperature on the vector competence of Aedes fowleri for Rift Valley fever virus. Res Virol 1989;140:147–154 [CrossRef][PubMed]
    [Google Scholar]
  140. Turell MJ, Byrd BD, Harrison BA. Potential for populations of Aedes j. japonicus to transmit Rift Valley fever virus in the USA. J Am Mosq Control Assoc 2013;29:133–137 [CrossRef][PubMed]
    [Google Scholar]
  141. Turell MJ, Kay BH. Susceptibility of selected strains of Australian mosquitoes (Diptera: Culicidae) to Rift Valley fever virus. J Med Entomol 1998;35:132–135 [CrossRef][PubMed]
    [Google Scholar]
  142. Iranpour M, Turell MJ, Lindsay LR. Potential for Canadian mosquitoes to transmit Rift Valley fever virus. J Am Mosq Control Assoc 2011;27:363–369 [CrossRef][PubMed]
    [Google Scholar]
  143. Turell MJ. Effect of environmental temperature on the vector competence of Aedes taeniorhynchus for Rift Valley fever and Venezuelan equine encephalitis viruses. Am J Trop Med Hyg 1993;49:672–676[PubMed][CrossRef]
    [Google Scholar]
  144. Turell MJ, Dohm DJ, Mores CN, Terracina L, Wallette DL et al. Potential for North American mosquitoes to transmit Rift Valley fever virus. J Am Mosq Control Assoc 2008;24:502–507 [CrossRef][PubMed]
    [Google Scholar]
  145. Turell MJ, Wilson WC, Bennett KE. Potential for North American mosquitoes (Diptera: Culicidae) to transmit Rift Valley fever virus. J Med Entomol 2010;47:884–889 [CrossRef][PubMed]
    [Google Scholar]
  146. Ndiaye Elh, Fall G, Gaye A, Bob NS, Talla C et al. Vector competence of Aedes vexans (Meigen), Culex poicilipes (Theobald) and Cx. quinquefasciatus Say from Senegal for West and East African lineages of Rift Valley fever virus. Parasit Vectors 2016;9:94 [CrossRef][PubMed]
    [Google Scholar]
  147. Mcintosh BM, Jupp PG, Anderson D, Dickinson DB. Rift Valley fever. 2. Attempts to transmit virus with seven species of mosquito. J S Afr Vet Med Assoc 1973;44:57–60[PubMed]
    [Google Scholar]
  148. Turell MJ, Dohm DJ, Fonseca DM. Comparison of the potential for different genetic forms in the Culex pipiens complex in North America to transmit Rift Valley fever virus. J Am Mosq Control Assoc 2014;30:253–259 [CrossRef][PubMed]
    [Google Scholar]
  149. Turell MJ, Lee JS, Richardson JH, Sang RC, Kioko EN et al. Vector competence of Kenyan Culex zombaensis and Culex quinquefasciatus mosquitoes for Rift Valley fever virus. J Am Mosq Control Assoc 2007;23:378–382 [CrossRef][PubMed]
    [Google Scholar]
  150. Jupp PG, Kemp A, Grobbelaar A, Lema P, Burt FJ et al. The 2000 epidemic of Rift Valley fever in Saudi Arabia: mosquito vector studies. Med Vet Entomol 2002;16:245–252 [CrossRef][PubMed]
    [Google Scholar]
  151. Smithburn KC, Haddow AJ, Lumsden WH. Rift Valley fever; transmission of the virus by mosquitoes. Br J Exp Pathol 1949;30:35–47[PubMed]
    [Google Scholar]
  152. Wilkerson RC, Linton YM, Fonseca DM, Schultz TR, Price DC et al. Making mosquito taxonomy useful: a stable classification of tribe Aedini that balances utility with current knowledge of evolutionary relationships. PLoS One 2015;10:e0133602 [CrossRef][PubMed]
    [Google Scholar]
  153. Harbach R. n.d; Mosquito taxonomic inventory. www.mosquito-taxonomic-inventory.info/ [accessed November 16, 2016]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000765
Loading
/content/journal/jgv/10.1099/jgv.0.000765
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error