1887

Abstract

CD8 cells from simian immunodeficiency virus (SIV)-infected long-term non-progressors and some uninfected macaques can suppress viral replication in vitro without killing the infected cells. The aim of this study was to identify factors responsible for non-cytolytic viral suppression by transcriptional profiling and to investigate their potential impact on SIV replication. Results of microarray experiments and further validation with cells from infected and uninfected macaques revealed that FAM26F RNA levels distinguished CD8 cells of controllers and non-controllers (P=0.001). However, FAM26F was also expressed in CD4 T-cells and B-cells. FAM26F expression increased in lymphocytes after in vitro IFN-γ treatment on average 40-fold, and ex vivo FAM26F RNA levels in peripheral blood mononuclear cells correlated with plasma IFN-γ but not with IFN-α. Baseline FAM26F expression appeared to be stable for months, albeit the individual expression levels varied up to tenfold. Investigating its role in SIV-infection revealed that FAM26F was upregulated after infection (P<0.0008), but did not directly correlate with viral load in contrast to MX1 and CXCL10. However, pre-infection levels of FAM26F correlated inversely with overall plasma viral load (AUC) during the acute and post-acute phases of infection (e.g. AUC weeks post infection 0–8; no AIDS vaccine: P<0.0001, Spearman rank correlation coefficient (rs)=−0.89, n=16; immunized with an AIDS vaccine: P=0.033, rs=−0.43; n=25). FAM26F transcript levels prior to infection can provide information about the pace and strength of the antiviral immune response during the early stage of infection. FAM26F expression represented, in our experiments, one of the earliest prognostic markers, and could supplement major histocompatibility complex (MHC)-typing to predict disease progression before SIV-infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000632
2016-12-16
2019-08-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/12/3400.html?itemId=/content/journal/jgv/10.1099/jgv.0.000632&mimeType=html&fmt=ahah

References

  1. Allen T. M., O'Connor D. H., Jing P., Dzuris J. L., Mothé B. R., Vogel T. U., Dunphy E., Liebl M. E., Emerson C. et al.( 2000;). Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. . Nature 407: 386–390. [CrossRef] [PubMed]
    [Google Scholar]
  2. Barouch D. H., Ghneim K., Bosche W. J., Li Y., Berkemeier B., Hull M., Bhattacharyya S., Cameron M., Liu J. et al.( 2016;). Rapid inflammasome activation following mucosal SIV infection of rhesus monkeys. . Cell 165: 656–667. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bernier A., Cleret-Buhot A., Zhang Y., Goulet J. P., Monteiro P., Gosselin A., DaFonseca S., Wacleche V. S., Jenabian M. A. et al.( 2013;). Transcriptional profiling reveals molecular signatures associated with HIV permissiveness in Th1Th17 cells and identifies peroxisome proliferator-activated receptor gamma as an intrinsic negative regulator of viral replication. . Retrovirology 10: 160. [CrossRef] [PubMed]
    [Google Scholar]
  4. Blackbourn D. J., Mackewicz C. E., Barker E., Hunt T. K., Herndier B., Haase A. T., Levy J. A..( 1996;). Suppression of HIV replication by lymphoid tissue CD8+ cells correlates with the clinical state of HIV-infected individuals. . Proc Natl Acad Sci U S A 93: 13125–13130.[PubMed] [CrossRef]
    [Google Scholar]
  5. Brown J., Wallet M. A., Krastins B., Sarracino D., Goodenow M. M..( 2010;). Proteome bioprofiles distinguish between M1 priming and activation states in human macrophages. . J Leukoc Biol 87: 655–662. [CrossRef] [PubMed]
    [Google Scholar]
  6. Castelli J. C., Deeks S. G., Shiboski S., Levy J. A..( 2002;). Relationship of CD8+ T cell noncytotoxic anti-HIV response to CD4+ T cell number in untreated asymptomatic HIV-infected individuals. . Blood 99: 4225–4227. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chiba S., Ikushima H., Ueki H., Yanai H., Kimura Y., Hangai S., Nishio J., Negishi H., Tamura T. et al.( 2014;). Recognition of tumor cells by dectin-1 orchestrates innate immune cells for anti-tumor responses. . Elife 3: e04177. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chmielewski S., Olejnik A., Sikorski K., Pelisek J., Błaszczyk K., Aoqui C., Nowicka H., Zernecke A., Heemann U. et al.( 2014;). STAT1-dependent signal integration between IFNγ and TLR4 in vascular cells reflect pro-atherogenic responses in human atherosclerosis. . PLoS One 9: e113318. [CrossRef] [PubMed]
    [Google Scholar]
  9. Deeks S. G., Walker B. D..( 2007;). Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. . Immunity 27: 406–416. [CrossRef] [PubMed]
    [Google Scholar]
  10. Defamie V., Cursio R., Le Brigand K., Moreilhon C., Saint-Paul M. C., Laurens M., Crenesse D., Cardinaud B., Auberger P. et al.( 2008;). Gene expression profiling of human liver transplants identifies an early transcriptional signature associated with initial poor graft function. . Am J Transplant 8: 1221–1236. [CrossRef] [PubMed]
    [Google Scholar]
  11. Diaz L. S., Stone M. R., Mackewicz C. E., Levy J. A..( 2003;). Differential gene expression in CD8+ cells exhibiting noncytotoxic anti-HIV activity. . Virology 311: 400–409.[PubMed] [CrossRef]
    [Google Scholar]
  12. Ebihara T., Azuma M., Oshiumi H., Kasamatsu J., Iwabuchi K., Matsumoto K., Saito H., Taniguchi T., Matsumoto M., Seya T..( 2010;). Identification of a polyI : C-inducible membrane protein that participates in dendritic cell-mediated natural killer cell activation. . J Exp Med 207: 2675–2687. [CrossRef] [PubMed]
    [Google Scholar]
  13. Fan H., Tansi F. L., Weihofen W. A., Böttcher C., Hu J., Martinez J., Saenger W., Reutter W..( 2012;). Molecular mechanism and structural basis of interactions of dipeptidyl peptidase IV with adenosine deaminase and human immunodeficiency virus type-1 transcription transactivator. . Eur J Cell Biol 91: 265–273. [CrossRef] [PubMed]
    [Google Scholar]
  14. Ferreyra G. A., Elinoff J. M., Demirkale C. Y., Starost M. F., Buckley M., Munson P. J., Krakauer T., Danner R. L..( 2014;). Late multiple organ surge in interferon-regulated target genes characterizes staphylococcal enterotoxin B lethality. . PLoS One 9: e88756. [CrossRef] [PubMed]
    [Google Scholar]
  15. Gallina A., Hanley T. M., Mandel R., Trahey M., Broder C. C., Viglianti G. A., Ryser H. J..( 2002;). Inhibitors of protein-disulfide isomerase prevent cleavage of disulfide bonds in receptor-bound glycoprotein 120 and prevent HIV-1 entry. . J Biol Chem 277: 50579–50588. [CrossRef] [PubMed]
    [Google Scholar]
  16. Greco G., Barker E., Levy J. A..( 1998;). Differences in HIV replication in CD4+ lymphocytes are not related to β-chemokine production. . AIDS Res Hum Retroviruses 14: 1407–1411. [CrossRef] [PubMed]
    [Google Scholar]
  17. Grimes C. Z., Hwang L. Y., Wei P., Shah D. P., Volcik K. A., Brown E. L..( 2013;). Differentially regulated gene expression associated with hepatitis C virus clearance. . J Gen Virol 94: 534–542. [CrossRef] [PubMed]
    [Google Scholar]
  18. Jager S., Cimermancic P., Gulbahce N., Johnson J. R., McGovern K. E., Clarke S. C., Shales M., Mercenne G., Pache L. et al.( 2012;). Global landscape of HIV-human protein complexes. . Nature 481: 365–370.
    [Google Scholar]
  19. Javed A., Leuchte N., Neumann B., Sopper S., Sauermann U..( 2015;). Noncytolytic CD8+ cell mediated antiviral response represents a strong element in the immune response of simian immunodeficiency virus-infected long-term non-progressing rhesus macaques. . PLoS One 10: e0142086. [CrossRef] [PubMed]
    [Google Scholar]
  20. Julià A., Domènech E., Chaparro M., García-Sánchez V., Gomollón F., Panés J., Mañosa M., Barreiro-De Acosta M., Gutiérrez A. et al.( 2014;). A genome-wide association study identifies a novel locus at 6q22.1 associated with ulcerative colitis. . Hum Mol Genet 23: 6927–6934. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kasamatsu J., Azuma M., Oshiumi H., Morioka Y., Okabe M., Ebihara T., Matsumoto M., Seya T..( 2014;). INAM plays a critical role in IFN-γ production by NK cells interacting with polyinosinic-polycytidylic acid-stimulated accessory cells. . J Immunol 193: 5199–5207. [CrossRef] [PubMed]
    [Google Scholar]
  22. Katz B. Z., Salimi B., Gadd S. L., Huang C. C., Kabat W. J., Kersey D., McCabe C., Heald-Sargent T., Katz E. D., Yogev R..( 2011;). Differential gene expression of soluble CD8+ T-cell mediated suppression of HIV replication in three older children. . J Med Virol 83: 24–32. [CrossRef] [PubMed]
    [Google Scholar]
  23. Killian M. S., Teque F., Walker R. L., Meltzer P. S., Killian J. K..( 2013;). CD8+ lymphocytes suppress human immunodeficiency virus 1 replication by secreting type I interferons. . J Interferon Cytokine Res 33: 632–645. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kim M. J., Romero R., Kim C. J., Tarca A. L., Chhauy S., LaJeunesse C., Lee D. C., Draghici S., Gotsch F. et al.( 2009;). Villitis of unknown etiology is associated with a distinct pattern of chemokine up-regulation in the feto-maternal and placental compartments: implications for conjoint maternal allograft rejection and maternal anti-fetal graft-versus-host disease. . J Immunol 182: 3919–3927.[CrossRef]
    [Google Scholar]
  25. Lee M. N., Ye C., Villani A. C., Raj T., Li W., Eisenhaure T. M., Imboywa S. H., Chipendo P., Ran F. A. et al.( 2014;). Common genetic variants modulate pathogen-sensing responses in human dendritic cells. . Science 343: 1246980. [CrossRef] [PubMed]
    [Google Scholar]
  26. Levy J. A..( 2003;). The search for the CD8+ cell anti-HIV factor (CAF). . Trends Immunol 24: 628–632.[PubMed] [CrossRef]
    [Google Scholar]
  27. Lim S. G., Condez A., Lee C. A., Johnson M. A., Elia C., Poulter L. W..( 1993;). Loss of mucosal CD4 lymphocytes is an early feature of HIV infection. . Clin Exp Immunol 92: 448–454.[PubMed] [CrossRef]
    [Google Scholar]
  28. Lu W., Chen S., Lai C., Lai M., Fang H., Dao H., Kang J., Fan J., Guo W. et al.( 2016;). Suppression of HIV replication by CD8+ regulatory T-cells in elite controllers. . Front Immunol 7: 134. [CrossRef] [PubMed]
    [Google Scholar]
  29. Mackewicz C. E., Ortega H. W., Levy J. A..( 1991;). CD8+ cell anti-HIV activity correlates with the clinical state of the infected individual. . J Clin Invest 87: 1462–1466. [CrossRef] [PubMed]
    [Google Scholar]
  30. Mackewicz C. E., Craik C. S., Levy J. A..( 2003;). The CD8+ cell noncytotoxic anti-HIV response can be blocked by protease inhibitors. . Proc Natl Acad Sci U S A 100: 3433–3438. [CrossRef] [PubMed]
    [Google Scholar]
  31. Manh T. P., Alexandre Y., Baranek T., Crozat K., Dalod M..( 2013;). Plasmacytoid, conventional, and monocyte-derived dendritic cells undergo a profound and convergent genetic reprogramming during their maturation. . Eur J Immunol 43: 1706–1715. [CrossRef] [PubMed]
    [Google Scholar]
  32. Martinez-Mariño B., Foster H., Hao Y., Levy J. A..( 2007;). Differential gene expression in CD8+ cells from HIV-1-infected subjects showing suppression of HIV replication. . Virology 362: 217–225. [CrossRef] [PubMed]
    [Google Scholar]
  33. Matsumiya M., Harris S. A., Satti I., Stockdale L., Tanner R., O'Shea M. K., Tameris M., Mahomed H., Hatherill M. et al.( 2014;). Inflammatory and myeloid-associated gene expression before and one day after infant vaccination with MVA85A correlates with induction of a T cell response. . BMC Infect Dis 14: 314. [CrossRef] [PubMed]
    [Google Scholar]
  34. Mattapallil J. J., Douek D. C., Hill B., Nishimura Y., Martin M., Roederer M..( 2005;). Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. . Nature 434: 1093–1097. [CrossRef] [PubMed]
    [Google Scholar]
  35. Mudd P. A., Watkins D. I.( 2011;). Understanding animal models of elite control: windows on effective immune responses against immunodeficiency viruses. . Curr Opin HIV AIDS 6: 197–201.[CrossRef]
    [Google Scholar]
  36. Muhl T., Krawczak M., Ten Haaft P., Hunsmann G., Sauermann U..( 2002;). MHC class I alleles influence set-point viral load and survival time in simian immunodeficiency virus-infected rhesus monkeys. . J Immunol 169: 3438–3446.[CrossRef]
    [Google Scholar]
  37. Mussil B., Sauermann U., Motzkus D., Stahl-Hennig C., Sopper S..( 2011;). Increased APOBEC3G and APOBEC3F expression is associated with low viral load and prolonged survival in simian immunodeficiency virus infected rhesus monkeys. . Retrovirology 8: 77. [CrossRef] [PubMed]
    [Google Scholar]
  38. Negri D. R., Baroncelli S., Catone S., Comini A., Michelini Z., Maggiorella M. T., Sernicola L., Crostarosa F., Belli R. et al.( 2004;). Protective efficacy of a multicomponent vector vaccine in cynomolgus monkeys after intrarectal simian immunodeficiency virus challenge. . J Gen Virol 85: 1191–1201. [CrossRef] [PubMed]
    [Google Scholar]
  39. O'Connor S. L., Becker E. A., Weinfurter J. T., Chin E. N., Budde M. L., Gostick E., Correll M., Gleicher M., Hughes A. L. et al.( 2012;). Conditional CD8+ T cell escape during acute simian immunodeficiency virus infection. . J Virol 86: 605–609. [CrossRef] [PubMed]
    [Google Scholar]
  40. Ochieng W., Sauermann U., Schulte R., Suh Y. S., Kim K. S., Sung Y. C., Hunsmann G., Stahl-Hennig C., Sopper S..( 2009;). Susceptibility to simian immunodeficiency virus ex vivo predicts outcome of a prime-boost vaccine after SIVmac239 challenge. . J Acquir Immune Defic Syndr 52: 162–169. [CrossRef] [PubMed]
    [Google Scholar]
  41. Pankla R., Buddhisa S., Berry M., Blankenship D. M., Bancroft G. J., Banchereau J., Lertmemongkolchai G., Chaussabel D..( 2009;). Genomic transcriptional profiling identifies a candidate blood biomarker signature for the diagnosis of septicemic melioidosis. . Genome Biol 10: R127. [CrossRef] [PubMed]
    [Google Scholar]
  42. Poropatich K., Sullivan D. J..( 2011;). Human immunodeficiency virus type 1 long-term non-progressors: the viral, genetic and immunological basis for disease non-progression. . J Gen Virol 92: 247–268.[CrossRef]
    [Google Scholar]
  43. Reiser K., Francois K. O., Schols D., Bergman T., Jornvall H., Balzarini J., Karlsson A., Lundberg M..( 2012;). Thioredoxin-1 and protein disulfide isomerase catalyze the reduction of similar disulfides in HIV gp120. . Int J Biochem Cell Biol 44: 556–562. [CrossRef] [PubMed]
    [Google Scholar]
  44. Rotger M., Dalmau J., Rauch A., McLaren P., Bosinger S. E., Martinez R., Sandler N. G., Roque A., Liebner J. et al.( 2011;). Comparative transcriptomics of extreme phenotypes of human HIV-1 infection and SIV infection in sooty mangabey and rhesus macaque. . J Clin Invest 121: 2391–2400. [CrossRef] [PubMed]
    [Google Scholar]
  45. Sauermann U., Siddiqui R., Suh Y. S., Platzer M., Leuchte N., Meyer H., Mätz-Rensing K., Stoiber H., Nürnberg P. et al.( 2008;). MHC class I haplotypes associated with survival time in simian immunodeficiency virus (SIV)-infected rhesus macaques. . Genes Immun 9: 69–80. [CrossRef] [PubMed]
    [Google Scholar]
  46. Schneider T., Jahn H. U., Schmidt W., Riecken E. O., Zeitz M., Ullrich R..( 1995;). Loss of CD4 T lymphocytes in patients infected with human immunodeficiency virus type 1 is more pronounced in the duodenal mucosa than in the peripheral blood. Berlin Diarrhea/Wasting Syndrome Study Group. . Gut 37: 524–529.[PubMed] [CrossRef]
    [Google Scholar]
  47. Shahzad K., Cadeiras M., Memon S., Zeeberg B., Klingler T., Sinha A., Tabak E. G., Unniachan S., Deng M. C..( 2010;). Gene expression signatures of peripheral blood mononuclear cells during the early post-transplant period in patients developing cardiac allograft vasculopathy. . J Transplant 2010: 719696. [CrossRef] [PubMed]
    [Google Scholar]
  48. Sheppard H. W., Lang W., Ascher M. S., Vittinghoff E., Winkelstein W..( 1993;). The characterization of non-progressors: long-term HIV-1 infection with stable CD4+ T-cell levels. . AIDS 7: 1159–1166.[PubMed] [CrossRef]
    [Google Scholar]
  49. Songok E. M., Osero B., McKinnon L., Rono M. K., Apidi W., Matey E. J., Meyers A. F., Luo M., Kimani J. et al.( 2010;). CD26/dipeptidyl peptidase IV (CD26/DPPIV) is highly expressed in peripheral blood of HIV-1 exposed uninfected female sex workers. . Virol J 7: 343. [CrossRef] [PubMed]
    [Google Scholar]
  50. Stantchev T. S., Paciga M., Lankford C. R., Schwartzkopff F., Broder C. C., Clouse K. A..( 2012;). Cell-type specific requirements for thiol/disulfide exchange during HIV-1 entry and infection. . Retrovirology 9: 97. [CrossRef] [PubMed]
    [Google Scholar]
  51. Stranford S. A., Skurnick J., Louria D., Osmond D., Chang S. Y., Sninsky J., Ferrari G., Weinhold K., Lindquist C., Levy J. A..( 1999;). Lack of infection in HIV-exposed individuals is associated with a strong CD8+ cell noncytotoxic anti-HIV response. . Proc Natl Acad Sci U S A 96: 1030–1035.[PubMed] [CrossRef]
    [Google Scholar]
  52. Tenbusch M., Ignatius R., Temchura V., Nabi G., Tippler B., Stewart-Jones G., Salazar A. M., Sauermann Ü., Stahl-Hennig C., Uberla K..( 2012;). Risk of immunodeficiency virus infection may increase with vaccine-induced immune response. . J Virol 86: 10533–10539. [CrossRef] [PubMed]
    [Google Scholar]
  53. Ulloa-Montoya F., Louahed J., Dizier B., Gruselle O., Spiessens B., Lehmann F. F., Suciu S., Kruit W. H., Eggermont A. M. et al.( 2013;). Predictive gene signature in MAGE-A3 antigen-specific cancer immunotherapy. . J Clin Oncol 31: 2388–2395.[CrossRef]
    [Google Scholar]
  54. Vella C., Daniels R. S..( 2003;). CD8+ T-cell-mediated non-cytolytic suppression of human immuno-deficiency viruses. . Curr Drug Targets Infect Disord 3: 97–113. [CrossRef] [PubMed]
    [Google Scholar]
  55. Walker C. M., Moody D. J., Stites D. P., Levy J. A..( 1986;). CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. . Science 234: 1563–1566.[PubMed] [CrossRef]
    [Google Scholar]
  56. Walker C. M., Erickson A. L., Hsueh F. C., Levy J. A..( 1991;). Inhibition of human immunodeficiency virus replication in acutely infected CD4+ cells by CD8+ cells involves a noncytotoxic mechanism. . J Virol 65: 5921–5927.[PubMed]
    [Google Scholar]
  57. Welcher A. A., Boedigheimer M., Kivitz A. J., Amoura Z., Buyon J., Rudinskaya A., Latinis K., Chiu K., Oliner K. S. et al.( 2015;). Blockade of interferon-γ normalizes interferon-regulated gene expresson and serum CXCL10 levels in patients with systemic lupus erythematosus. . Arthritis Rheumatol 67: 2713–2722. [CrossRef] [PubMed]
    [Google Scholar]
  58. Wiviott L. D., Walker C. M., Levy J. A..( 1990;). CD8+ lymphocytes suppress HIV production by autologous CD4+ cells without eliminating the infected cells from culture. . Cell Immunol 128: 628–634.[PubMed] [CrossRef]
    [Google Scholar]
  59. Yuan L., Ma L., Fan X., Feng Y., Peng H., Zhao Q., Ruan Y., Levy J. A., Shao Y..( 2009;). CD8+ cell noncytotoxic antiviral response in long-term HIV-1 infected former blood donors in China. . Curr HIV Res 7: 437–440.[PubMed] [CrossRef]
    [Google Scholar]
  60. Zhang S., Kim C. C., Batra S., McKerrow J. H., Loke P..( 2010;). Delineation of diverse macrophage activation programs in response to intracellular parasites and cytokines. . PLoS Negl Trop Dis 4: e648. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000632
Loading
/content/journal/jgv/10.1099/jgv.0.000632
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error