1887

Abstract

Infection of mice with Sindbis virus (SINV) produces encephalomyelitis and provides a model for examination of the central nervous system (CNS) immune response to alphavirus infection. Clearance of infectious virus is accomplished through a cooperative effort between SINV-specific antibody and IFN-γ, but the regulatory interactions are poorly understood. To determine the effects of IFN-γ on clinical disease and the antiviral immune response, C57BL/6 mice lacking IFN-γ () or IFN-γ receptor () were studied in comparison to WT mice. Maximum production of mRNA and IFN-γ protein in the CNS of WT and mice occurred 5–7 days after infection, with higher levels of IFN-γ in mice. Onset of clinical disease was earlier in mice with impaired IFN-γ signalling, although mice recovered more rapidly. and mice maintained body weight better than WT mice, associated with better food intake and lower brain levels of inflammatory cytokines. Clearance of infectious virus from the spinal cords was slower, and CNS, but not serum, levels of SINV-specific IgM, IgG2a and IgG2b were lower in and mice compared to WT mice. Decreased CNS antiviral antibody was associated with lower expression of mRNAs for B-cell attracting chemokines CXCL9, CXCL10 and CXCL13 and fewer B cells in the CNS. Therefore, IFN-γ signalling increases levels of CNS pro-inflammatory cytokines, leading to clinical disease, but synergistically clears virus with SINV-specific antibody at least in part by increasing chemokine production important for infiltration of antibody-secreting B cells into the CNS.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000613
2016-11-10
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/11/2908.html?itemId=/content/journal/jgv/10.1099/jgv.0.000613&mimeType=html&fmt=ahah

References

  1. Bardina S. V., Michlmayr D., Hoffman K. W., Obara C. J., Sum J., Charo I. F., Lu W., Pletnev A. G., Lim J. K.. 2015; Differential roles of chemokines CCL2 and CCL7 in monocytosis and leukocyte migration during West Nile virus infection. J Immunol195:4306–4318 [CrossRef][PubMed]
    [Google Scholar]
  2. Barkhouse D. A., Garcia S. A., Bongiorno E. K., Lebrun A., Faber M., Hooper D. C.. 2015; Expression of interferon gamma by a recombinant rabies virus strongly attenuates the pathogenicity of the virus via induction of type I interferon. J Virol89:312–322 [CrossRef][PubMed]
    [Google Scholar]
  3. Benson M. J., Dillon S. R., Castigli E., Geha R. S., Xu S., Lam K. P., Noelle R. J.. 2008; Cutting edge: the dependence of plasma cells and independence of memory B cells on BAFF and APRIL. J Immunol180:3655–3659 [CrossRef][PubMed]
    [Google Scholar]
  4. Bergmann C. C., Parra B., Hinton D. R., Ramakrishna C., Dowdell K. C., Stohlman S. A.. 2004; Perforin and gamma interferon-mediated control of coronavirus central nervous system infection by CD8 T cells in the absence of CD4 T cells. J Virol78:1739–1750 [CrossRef][PubMed]
    [Google Scholar]
  5. Binder G. K., Griffin D. E.. 2001; Interferon-gamma-mediated site-specific clearance of alphavirus from CNS neurons. Science293:303–306 [CrossRef][PubMed]
    [Google Scholar]
  6. Bruyn H. B., Lennette E. H.. 1953; Western equine encephalitis in infants; a report on three cases with sequelae. Calif Med79:362–366[PubMed]
    [Google Scholar]
  7. Burdeinick-Kerr R., Wind J., Griffin D. E.. 2007; Synergistic roles of antibody and interferon in noncytolytic clearance of Sindbis virus from different regions of the central nervous system. J Virol81:5628–5636 [CrossRef][PubMed]
    [Google Scholar]
  8. Burdeinick-Kerr R., Govindarajan D., Griffin D. E.. 2009; Noncytolytic clearance of Sindbis virus infection from neurons by gamma interferon is dependent on Jak/STAT signaling. J Virol83:3429–3435 [CrossRef][PubMed]
    [Google Scholar]
  9. Byrnes A. P., Durbin J. E., Griffin D. E.. 2000; Control of Sindbis virus infection by antibody in interferon-deficient mice. J Virol74:3905–3908 [CrossRef][PubMed]
    [Google Scholar]
  10. Carmen J., Rothstein J. D., Kerr D. A.. 2009; Tumor necrosis factor-α modulates glutamate transport in the CNS and is a critical determinant of outcome from viral encephalomyelitis. Brain Res1263:143–154 [CrossRef][PubMed]
    [Google Scholar]
  11. Chachu K. A., Strong D. W., LoBue A. D., Wobus C. E., Baric R. S., Virgin H. W.. 2008; Antibody is critical for the clearance of murine norovirus infection. J Virol82:6610–6617 [CrossRef][PubMed]
    [Google Scholar]
  12. Charles P. C., Trgovcich J., Davis N. L., Johnston R. E.. 2001; Immunopathogenesis and immune modulation of Venezuelan equine encephalitis virus-induced disease in the mouse. Virology284:190–202 [CrossRef][PubMed]
    [Google Scholar]
  13. Chu C. Q., Wittmer S., Dalton D. K.. 2000; Failure to suppress the expansion of the activated CD4 T cell population in interferon γ-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J Exp Med187:123–128 [CrossRef]
    [Google Scholar]
  14. Colantonio L., Iellem A., Sinigaglia F., D'Ambrosio D.. 2002; Skin-homing CLA+ T cells and regulatory CD25+ T cells represent major subsets of human peripheral blood memory T cells migrating in response to CCL1/I-309. Eur J Immunol32:3506–3514 [CrossRef][PubMed]
    [Google Scholar]
  15. Cole K. E., Strick C. A., Paradis T. J., Ogborne K. T., Loetscher M., Gladue R. P., Lin W., Boyd J. G., Moser B. et al. 1998; Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med187:2009–2021 [CrossRef][PubMed]
    [Google Scholar]
  16. Coro E. S., Chang W. L., Baumgarth N.. 2006; Type I IFN receptor signals directly stimulate local B cells early following influenza virus infection. J Immunol176:4343–4351 [CrossRef][PubMed]
    [Google Scholar]
  17. D'Ambrosio D., Iellem A., Bonecchi R., Mazzeo D., Sozzani S., Mantovani A., Sinigaglia F.. 1998; Selective up-regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells. J Immunol161:5111–5115[PubMed]
    [Google Scholar]
  18. Dalton D. K., Pitts-Meek S., Keshav S., Figari I. S., Bradley A., Stewart T. A.. 1993; Multiple defects of immune cell function in mice with disrupted interferon-γ genes. Science259:1739–1742 [CrossRef][PubMed]
    [Google Scholar]
  19. Dietzschold B.. 1993; Antibody-mediated clearance of viruses from the mammalian central nervous system. Trends Microbiol1:63–66 [CrossRef][PubMed]
    [Google Scholar]
  20. Earnest M. P., Goolishian H. A., Calverley J. R., Hayes R. O., Hill H. R.. 1971; Neurologic, intellectual, and psychologic sequelae following western encephalitis. A follow-up study of 35 cases. Neurology21:969–974 [CrossRef][PubMed]
    [Google Scholar]
  21. Fahey J. L., Wunderlich J., Mishell R.. 1964; The immunoglobulins of mice II. Two subclasses of mouse 7S γ2-globulins: γ2a- and γ2b-globulins. J Exp Med120:243–251[CrossRef]
    [Google Scholar]
  22. Farber J. M.. 1990; A macrophage mRNA selectively induced by gamma-interferon encodes a member of the platelet factor 4 family of cytokines. Proc Natl Acad Sci U S A87:5238–5242 [CrossRef][PubMed]
    [Google Scholar]
  23. Farrar M. A., Schreiber R. D.. 1993; The molecular cell biology of interferon-gamma and its receptor. Annu Rev Immunol11:571–611 [CrossRef][PubMed]
    [Google Scholar]
  24. Fehr A. R., Athmer J., Channappanavar R., Phillips J. M., Meyerholz D. K., Perlman S.. 2015; The nsp3 macrodomain promotes virulence in mice with coronavirus-induced encephalitis. J Virol89:1523–1536 [CrossRef][PubMed]
    [Google Scholar]
  25. Feuerstein G. Z., Liu T., Barone F. C.. 1994; Cytokines, inflammation, and brain injury: role of tumor necrosis factor-alpha. Cerebrovasc Brain Metab Rev6:341–360[PubMed]
    [Google Scholar]
  26. Finkelman F. D., Svetic A., Gresser I., Snapper C., Holmes J., Trotta P. P., Katona I. M., Gause W. C.. 1991; Regulation by interferon alpha of immunoglobulin isotype selection and lymphokine production in mice. J Exp Med174:1179–1188 [CrossRef][PubMed]
    [Google Scholar]
  27. Finley K. H., Longshore W. A., Palmer R. J., Cook R. E., Riggs N.. 1955; Western equine and St. Louis encephalitis; preliminary report of a clinical follow-up study in California. Neurology5:223–235 [CrossRef][PubMed]
    [Google Scholar]
  28. Frolov I., Akhrymuk M., Akhrymuk I., Atasheva S., Frolova E. I.. 2012; Early events in alphavirus replication determine the outcome of infection. J Virol86:5055–5066 [CrossRef][PubMed]
    [Google Scholar]
  29. Fuchizaki U., Kaneko S., Nakamoto Y., Sugiyama Y., Imagawa K., Kikuchi M., Kobayashi K.. 2003; Synergistic antiviral effect of a combination of mouse interferon-α and interferon-γ on mouse hepatitis virus. J Med Virol69:188–194 [CrossRef]
    [Google Scholar]
  30. Geiger K. D., Gurushanthaiah D., Howes E. L., Lewandowski G. A., Reed J. C., Bloom F. E., Sarvetnick N. E.. 1995; Cytokine-mediated survival from lethal herpes simplex virus infection: role of programmed neuronal death. Proc Natl Acad Sci U S A92:3411–3415 [CrossRef][PubMed]
    [Google Scholar]
  31. Getts D. R., Matsumoto I., Müller M., Getts M. T., Radford J., Shrestha B., Campbell I. L., King N. J.. 2007; Role of IFN-γ in an experimental murine model of West Nile virus-induced seizures. J Neurochem103:1019–1030 [CrossRef][PubMed]
    [Google Scholar]
  32. Gil-Cruz C., Perez-Shibayama C., Firner S., Waisman A., Bechmann I., Thiel V., Cervantes-Barragan L., Ludewig B.. 2012; T helper cell- and CD40-dependent germline IgM prevents chronic virus-induced demyelinating disease. Proc Natl Acad Sci U S A109:1233–1238 [CrossRef][PubMed]
    [Google Scholar]
  33. Glineur S. F., Bowen A. B., Percopo C. M., Garcia-Crespo K. E., Dyer K. D., Ochkur S. I., Lee N. A., Lee J. J., Domachowske J. B., Rosenberg H. F.. 2014; Sustained inflammation and differential expression of interferons type I and III in PVM-infected interferon-gamma (IFNγ) gene-deleted mice. Virology468-470:140–149 [CrossRef][PubMed]
    [Google Scholar]
  34. Greene I. P., Lee E. Y., Prow N., Ngwang B., Griffin D. E.. 2008; Protection from fatal viral encephalomyelitis: AMPA receptor antagonists have a direct effect on the inflammatory response to infection. Proc Natl Acad Sci U S A105:3575–3580 [CrossRef][PubMed]
    [Google Scholar]
  35. Grey H. M., Hirst J. W., Cohn M.. 1971; A new mouse immunoglobulin: IgG3. J Exp Med133:289–304[PubMed][CrossRef]
    [Google Scholar]
  36. Grieder F. B., Vogel S. N.. 1999; Role of interferon and interferon regulatory factors in early protection against Venezuelan equine encephalitis virus infection. Virology257:106–118 [CrossRef][PubMed]
    [Google Scholar]
  37. Griffin D. E.. 2003; Immune responses to RNA-virus infections of the CNS. Nat Rev Immunol3:493–502 [CrossRef][PubMed]
    [Google Scholar]
  38. Griffin D. E.. 2010a; Recovery from viral encephalomyelitis: immune-mediated noncytolytic virus clearance from neurons. Immunol Res47:123–133 [CrossRef]
    [Google Scholar]
  39. Griffin D. E.. 2010b; Emergence and re-emergence of viral diseases of the central nervous system. Prog Neurobiol91:95–101 [CrossRef]
    [Google Scholar]
  40. Griffin D. E.. 2013; Alphaviruses. In Fields Virology, 6th edn. , pp.652–686 Edited by Knipe D. M., Howley P. M.. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  41. Gubler D. J.. 2002; The global emergence/resurgence of arboviral diseases as public health problems. Arch Med Res33:330–342 [CrossRef][PubMed]
    [Google Scholar]
  42. Hallensleben W., Staeheli P.. 1999; Inhibition of Borna disease virus multiplication by interferon: cell line differences in susceptibility. Arch Virol144:1209–1216 [CrossRef][PubMed]
    [Google Scholar]
  43. Hausmann J., Pagenstecher A., Baur K., Richter K., Rziha H. J., Staeheli P.. 2005; CD8 T cells require γ interferon to clear Borna disease virus from the brain and prevent immune system-mediated neuronal damage. J Virol79:13509–13518 [CrossRef][PubMed]
    [Google Scholar]
  44. Henrichsen P., Bartholdy C., Christensen J. P., Thomsen A. R.. 2005; Impaired virus control and severe CD8+ T-cell-mediated immunopathology in chimeric mice deficient in gamma interferon receptor expression on both parenchymal and hematopoietic cells. J Virol79:10073–10076 [CrossRef][PubMed]
    [Google Scholar]
  45. Hidalgo L. G., Urmson J., Halloran P. F.. 2005; IFN-γ decreases CTL generation by limiting IL-2 production: a feedback loop controlling effector cell production. Am J Transplant5:651–661 [CrossRef][PubMed]
    [Google Scholar]
  46. Hirano N., Taira H., Sato S., Hashikawa T., Tohyama K.. 2006; Antibody-mediated virus clearance from neurons of rats infected with hemagglutinating encephalomyelitis virus. Adv Exp Med Biol581:391–394 [CrossRef][PubMed]
    [Google Scholar]
  47. Hodge D. L., Martinez A., Julias J. G., Taylor L. S., Young H. A.. 2002; Regulation of nuclear gamma interferon gene expression by interleukin 12 (IL-12) and IL-2 represents a novel form of posttranscriptional control. Mol Cell Biol22:1742–1753 [CrossRef][PubMed]
    [Google Scholar]
  48. Hooper D. C., Phares T. W., Fabis M. J., Roy A.. 2009; The production of antibody by invading B cells is required for the clearance of rabies virus from the central nervous system. PLoS Negl Trop Dis3:e535 [CrossRef][PubMed]
    [Google Scholar]
  49. Hussmann K. L., Fredericksen B. L.. 2014; Differential induction of CCL5 by pathogenic and non-pathogenic strains of West Nile virus in brain endothelial cells and astrocytes. J Gen Virol95:862–867 [CrossRef][PubMed]
    [Google Scholar]
  50. Ireland D. D., Stohlman S. A., Hinton D. R., Atkinson R., Bergmann C. C.. 2008; Type I interferons are essential in controlling neurotropic coronavirus infection irrespective of functional CD8 T cells. J Virol82:300–310 [CrossRef][PubMed]
    [Google Scholar]
  51. Jin Y., Lundkvist G., Dons L., Kristensson K., Rottenberg M. E.. 2004; Interferon-γ mediates neuronal killing of intracellular bacteria. Scand J Immunol60:437–448 [CrossRef][PubMed]
    [Google Scholar]
  52. Kimura T., Nakayama K., Penninger J., Kitagawa M., Harada H., Matsuyama T., Tanaka N., Kamijo R., Vilcek J., Mak T. W.. 1994; Involvement of the IRF-1 transcription factor in antiviral responses to interferons. Science264:1921–1924 [CrossRef][PubMed]
    [Google Scholar]
  53. Kimura T., Griffin D. E.. 2003; Extensive immune-mediated hippocampal damage in mice surviving infection with neuroadapted Sindbis virus. Virology311:28–39[PubMed][CrossRef]
    [Google Scholar]
  54. Klein R. S., Diamond M. S.. 2008; Immunological headgear: antiviral immune responses protect against neuroinvasive West Nile virus. Trends Mol Med14:286–294 [CrossRef][PubMed]
    [Google Scholar]
  55. Kotenko S. V., Izotova L. S., Pollack B. P., Mariano T. M., Donnelly R. J., Muthukumaran G., Cook J. R., Garotta G., Silvennoinen O., Ihle J. N.. 1995; Interaction between the components of the interferon gamma receptor complex. J Biol Chem270:20915–20921 [CrossRef][PubMed]
    [Google Scholar]
  56. Krakowski M., Owens T.. 1996; Interferon-γ confers resistance to experimental allergic encephalomyelitis. Eur J Immunol26:1641–1646 [CrossRef][PubMed]
    [Google Scholar]
  57. Krumbholz M., Theil D., Derfuss T., Rosenwald A., Schrader F., Monoranu C. M., Kalled S. L., Hess D. M., Serafini B. et al. 2005; BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J Exp Med201:195–200 [CrossRef][PubMed]
    [Google Scholar]
  58. Kulcsar K. A., Baxter V. K., Greene I. P., Griffin D. E.. 2014; Interleukin 10 modulation of pathogenic Th17 cells during fatal alphavirus encephalomyelitis. Proc Natl Acad Sci U S A111:16053–16058 [CrossRef][PubMed]
    [Google Scholar]
  59. Kulcsar K. A., Baxter V. K., Abraham R., Nelson A., Griffin D. E.. 2015; Distinct immune responses in resistant and susceptible strains of mice during neurovirulent alphavirus encephalomyelitis. J Virol89:8280–8291 [CrossRef][PubMed]
    [Google Scholar]
  60. Lambrechts L., Scott T. W., Gubler D. J.. 2010; Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis4:e646 [CrossRef][PubMed]
    [Google Scholar]
  61. Langhans W., Hrupka B.. 1999; Interleukins and tumor necrosis factor as inhibitors of food intake. Neuropeptides33:415–424 [CrossRef][PubMed]
    [Google Scholar]
  62. Langhans W.. 2000; Anorexia of infection: current prospects. Nutrition16:996–1005 [CrossRef][PubMed]
    [Google Scholar]
  63. Le Bon A., Schiavoni G., D'Agostino G., Gresser I., Belardelli F., Tough D. F.. 2001; Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity14:461–470 [CrossRef][PubMed]
    [Google Scholar]
  64. Le Bon A., Thompson C., Kamphuis E., Durand V., Rossmann C., Kalinke U., Tough D. F.. 2006; Cutting edge: enhancement of antibody responses through direct stimulation of B and T cells by type I IFN. J Immunol176:2074–2078 [CrossRef][PubMed]
    [Google Scholar]
  65. Lee E.-Y., Schultz K. L. W., Griffin D. E.. 2013; Mice deficient in interferon-gamma or interferon-gamma receptor 1 have distinct inflammatory responses to acute viral encephalomyelitis. PLoS One8:e76412 [CrossRef]
    [Google Scholar]
  66. Lehmann C., Sprenger H., Nain M., Bacher M., Gemsa D.. 1996; Infection of macrophages by influenza A virus: characteristics of tumour necrosis factor-α (TNFα) gene expression. Res Virol147:123–130 [CrossRef][PubMed]
    [Google Scholar]
  67. Leon C., Nandan D., Lopez M., Moeenrezakhanlou A., Reiner N. E.. 2006; Annexin V associates with the IFN-γ receptor and regulates IFN-γ signaling. J Immunol176:5934–5942 [CrossRef][PubMed]
    [Google Scholar]
  68. Levine B., Hardwick J. M., Trapp B. D., Crawford T. O., Bollinger R. C., Griffin D. E.. 1991; Antibody-mediated clearance of alphavirus infection from neurons. Science254:856–860 [CrossRef][PubMed]
    [Google Scholar]
  69. Levine B., Griffin D. E.. 1992; Persistence of viral RNA in mouse brains after recovery from acute alphavirus encephalitis. J Virol66:6429–6435[PubMed]
    [Google Scholar]
  70. Levy D. E., Lew D. J., Decker T., Kessler D. S., Darnell J. E.. 1990; Synergistic interaction between interferon-alpha and interferon-gamma through induced synthesis of one subunit of the transcription factor ISGF3. EMBO J9:1105–1111[PubMed]
    [Google Scholar]
  71. Lin A. A., Tripathi P. K., Sholl A., Jordan M. B., Hildeman D. A.. 2009; Gamma interferon signaling in macrophage lineage cells regulates central nervous system inflammation and chemokine production. J Virol83:8604–8615 [CrossRef][PubMed]
    [Google Scholar]
  72. Liu D., Lin P., Hu Y., Zhou Y., Tang G., Powers L., Medeiros L. J., Jorgensen J. L., Wang S. A.. 2012; Immunophenotypic heterogeneity of normal plasma cells: comparison with minimal residual plasma cell myeloma. J Clin Pathol65:823–829 [CrossRef][PubMed]
    [Google Scholar]
  73. Lustig S., Jackson A. C., Hahn C. S., Griffin D. E., Strauss E. G., Strauss J. H.. 1988; Molecular basis of Sindbis virus neurovirulence in mice. J Virol62:2329–2336[PubMed]
    [Google Scholar]
  74. Maillard I., Launois P., Xenarios I., Louis J. A., Acha-Orbea H., Diggelmann H.. 1998; Immune response to mouse mammary tumor virus in mice lacking the alpha/beta interferon or the gamma interferon receptor. J Virol72:2638–2646[PubMed]
    [Google Scholar]
  75. Marques C. P., Kapil P., Hinton D. R., Hindinger C., Nutt S. L., Ransohoff R. M., Phares T. W., Stohlman S. A., Bergmann C. C.. 2011; CXCR3-dependent plasma blast migration to the central nervous system during viral encephalomyelitis. J Virol85:6136–6147 [CrossRef][PubMed]
    [Google Scholar]
  76. Matsumoto M., Tanaka N., Harada H., Kimura T., Yokochi T., Kitagawa M., Schindler C., Taniguchi T.. 1999; Activation of the transcription factor ISGF3 by interferon-gamma. Biol Chem380:699–703 [CrossRef][PubMed]
    [Google Scholar]
  77. Medina F., Segundo C., Campos-Caro A., González-García I., Brieva J. A.. 2002; The heterogeneity shown by human plasma cells from tonsil, blood, and bone marrow reveals graded stages of increasing maturity, but local profiles of adhesion molecule expression. Blood99:2154–2161 [CrossRef][PubMed]
    [Google Scholar]
  78. Metcalf T. U., Griffin D. E.. 2011; Alphavirus-induced encephalomyelitis: antibody-secreting cells and viral clearance from the nervous system. J Virol85:11490–11501 [CrossRef][PubMed]
    [Google Scholar]
  79. Metcalf T. U., Baxter V. K., Nilaratanakul V., Griffin D. E.. 2013; Recruitment and retention of B cells in the central nervous system in response to alphavirus encephalomyelitis. J Virol87:2420–2429 [CrossRef][PubMed]
    [Google Scholar]
  80. Miller M. D., Krangel M. S.. 1992; The human cytokine I-309 is a monocyte chemoattractant. Proc Natl Acad Sci U S A89:2950–2954 [CrossRef][PubMed]
    [Google Scholar]
  81. Müller U., Steinhoff U., Reis L. F., Hemmi S., Pavlovic J., Zinkernagel R. M., Aguet M.. 1994; Functional role of type I and type II interferons in antiviral defense. Science264:1918–1921 [CrossRef][PubMed]
    [Google Scholar]
  82. Nargi-Aizenman J. L., Griffin D. E.. 2001; Sindbis virus-induced neuronal death is both necrotic and apoptotic and is ameliorated by N-methyl-d-aspartate receptor antagonists. J Virol75:7114–7121 [CrossRef][PubMed]
    [Google Scholar]
  83. Nargi-Aizenman J. L., Havert M. B., Zhang M., Irani D. N., Rothstein J. D., Griffin D. E.. 2004; Glutamate receptor antagonists protect from virus-induced neural degeneration. Ann Neurol55:541–549 [CrossRef][PubMed]
    [Google Scholar]
  84. Nussenzweig R. S., Merryman C., Benacerraf B.. 1964; Electrophoretic separation and properties of mouse antihapten antibodies involved in passive cutaneous anaphylaxis and passive hemolysis. J Exp Med120:315–328[CrossRef]
    [Google Scholar]
  85. Palmer R. J., Finley K. H.. 1956; Sequelae of encephalitis; report of a study after the California epidemic. Calif Med84:98–100[PubMed]
    [Google Scholar]
  86. Palus M., Vojtíšková J., Salát J., Kopecký J., Grubhoffer L., Lipoldová M., Demant P., Růžek D.. 2013; Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system. J Neuroinflammation10:77 [CrossRef][PubMed]
    [Google Scholar]
  87. Parra B., Hinton D. R., Marten N. W., Bergmann C. C., Lin M. T., Yang C. S., Stohlman S. A.. 1999; IFN-γ is required for viral clearance from central nervous system oligodendroglia. J Immunol162:1641–1647[PubMed]
    [Google Scholar]
  88. Pearce B. D., Hobbs M. V., McGraw T. S., Buchmeier M. J.. 1994; Cytokine induction during T-cell-mediated clearance of mouse hepatitis virus from neurons in vivo. J Virol68:5483–5495[PubMed]
    [Google Scholar]
  89. Pewe L., Haring J., Perlman S.. 2002; CD4 T-cell-mediated demyelination is increased in the absence of gamma interferon in mice infected with mouse hepatitis virus. J Virol76:7329–7333 [CrossRef][PubMed]
    [Google Scholar]
  90. Phares T. W., Marques C. P., Stohlman S. A., Hinton D. R., Bergmann C. C.. 2011; Factors supporting intrathecal humoral responses following viral encephalomyelitis. J Virol85:2589–2598 [CrossRef][PubMed]
    [Google Scholar]
  91. Phares T. W., Stohlman S. A., Hinton D. R., Bergmann C. C.. 2013; Astrocyte-derived CXCL10 drives accumulation of antibody-secreting cells in the central nervous system during viral encephalomyelitis. J Virol87:3382–3392 [CrossRef][PubMed]
    [Google Scholar]
  92. Phares T. W., DiSano K. D., Stohlman S. A., Segal B. M., Bergmann C. C.. 2016; CXCL13 promotes isotype-switched B cell accumulation to the central nervous system during viral encephalomyelitis. Brain Behav Immun54:128–139 [CrossRef][PubMed]
    [Google Scholar]
  93. Plata-Salamán C. R.. 1996; Anorexia during acute and chronic disease. Nutrition12:69–78 [CrossRef][PubMed]
    [Google Scholar]
  94. Potter M. C., Baxter V. K., Mathey R. W., Alt J., Rojas C., Griffin D. E., Slusher B. S.. 2015; Neurological sequelae induced by alphavirus infection of the CNS are attenuated by treatment with the glutamine antagonist 6-diazo-5-oxo-1-norleucine. J Neurovirol21:159–173 [CrossRef][PubMed]
    [Google Scholar]
  95. Prestwood T. R., Morar M. M., Zellweger R. M., Miller R., May M. M., Yauch L. E., Lada S. M., Shresta S.. 2012; Gamma interferon (IFN-γ) receptor restricts systemic dengue virus replication and prevents paralysis in IFN-α/β receptor-deficient mice. J Virol86:12561–12570 [CrossRef][PubMed]
    [Google Scholar]
  96. Prince G. A., Hemming V. G., Horswood R. L., Baron P. A., Murphy B. R., Chanock R. M.. 1990; Mechanism of antibody-mediated viral clearance in immunotherapy of respiratory syncytial virus infection of cotton rats. J Virol64:3091–3092[PubMed]
    [Google Scholar]
  97. Quick E. D., Leser J. S., Clarke P., Tyler K. L.. 2014; Activation of intrinsic immune responses and microglial phagocytosis in an ex vivo spinal cord slice culture model of West Nile virus infection. J Virol88:13005–13014 [CrossRef][PubMed]
    [Google Scholar]
  98. Raghavan A., Ogilvie R. L., Reilly C., Abelson M. L., Raghavan S., Vasdewani J., Krathwohl M., Bohjanen P. R.. 2002; Genome-wide analysis of mRNA decay in resting and activated primary human T lymphocytes. Nucleic Acids Res30:5529–5538 [CrossRef][PubMed]
    [Google Scholar]
  99. Ramakrishna C., Bergmann C. C., Atkinson R., Stohlman S. A.. 2003; Control of central nervous system viral persistence by neutralizing antibody. J Virol77:4670–4678 [CrossRef][PubMed]
    [Google Scholar]
  100. Remakus S., Sigal L. J.. 2011; Gamma interferon and perforin control the strength, but not the hierarchy, of immunodominance of an antiviral CD8+ T cell response. J Virol85:12578–12584 [CrossRef][PubMed]
    [Google Scholar]
  101. Rodriguez M., Zoecklein L. J., Howe C. L., Pavelko K. D., Gamez J. D., Nakane S., Papke L. M.. 2003; Gamma interferon is critical for neuronal viral clearance and protection in a susceptible mouse strain following early intracranial Theiler's murine encephalomyelitis virus infection. J Virol77:12252–12265 [CrossRef][PubMed]
    [Google Scholar]
  102. Rottenberg M., Kristensson K.. 2002; Effects of interferon-γ on neuronal infections. Viral Immunol15:247–260 [CrossRef][PubMed]
    [Google Scholar]
  103. Rowell J. F., Griffin D. E.. 1999; The inflammatory response to nonfatal Sindbis virus infection of the nervous system is more severe in SJL than in BALB/c mice and is associated with low levels of IL-4 mRNA and high levels of IL-10-producing CD4+ T cells. J Immunol162:1624–1632[PubMed]
    [Google Scholar]
  104. Rowell J. F., Griffin D. E.. 2002; Contribution of T cells to mortality in neurovirulent Sindbis virus encephalomyelitis. J Neuroimmunol127:106–114 [CrossRef][PubMed]
    [Google Scholar]
  105. Samuel C. E.. 2001; Antiviral actions of interferons. Clin Microbiol Rev14:778–809 [CrossRef][PubMed]
    [Google Scholar]
  106. Savarin C., Bergmann C. C.. 2008; Neuroimmunology of central nervous system viral infections: the cells, molecules and mechanisms involved. Curr Opin Pharmacol8:472–479 [CrossRef][PubMed]
    [Google Scholar]
  107. Savarin C., Stohlman S. A., Hinton D. R., Ransohoff R. M., Cua D. J., Bergmann C. C.. 2012; IFN-γ protects from lethal IL-17 mediated viral encephalomyelitis independent of neutrophils. J Neuroinflammation9:104 [CrossRef][PubMed]
    [Google Scholar]
  108. Sawitzki B., Kieselbach B., Fisser M., Meisel C., Vogt K., Gaestel M., Lehmann M., Risch K., Grütz G., Volk H. D.. 2004; IFN-γ regulation in anti-CD4 antibody-induced T cell unresponsiveness. J Am Soc Nephrol15:695–703 [CrossRef][PubMed]
    [Google Scholar]
  109. Snapper C. M., Paul W. E.. 1987; Interferon-γ and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science236:944–947 [CrossRef][PubMed]
    [Google Scholar]
  110. Soh J., Donnelly R. J., Kotenko S., Mariano T. M., Cook J. R., Wang N., Emanuel S., Schwartz B., Miki T., Pestka S.. 1994; Identification and sequence of an accessory factor required for activation of the human interferon gamma receptor. Cell76:793–802 [CrossRef][PubMed]
    [Google Scholar]
  111. Song R., Koyuncu O. O., Greco T. M., Diner B. A., Cristea I. M., Enquist L. W.. 2016; Two modes of the axonal interferon response limit alphaherpesvirus neuroinvasion. MBio7:e02145-15 [CrossRef][PubMed]
    [Google Scholar]
  112. Stamou P., Kontoyiannis D. L.. 2010; Posttranscriptional regulation of TNF mRNA: a paradigm of signal-dependent mRNA utilization and its relevance to pathology. Curr Dir Autoimmun11:61–79 [CrossRef][PubMed]
    [Google Scholar]
  113. Steele K. E., Reed D. S., Glass P. J., Hart M. K., Ludwig G. V., Pratt W. D., Parker M. D., Smith J. F.. 2007; Alphavirus encephalitides. In Medical Aspects of Biological Warfare , pp.241–270Edited by Dembek Z. F.. Fort Sam Houston, TX:: Office of the Surgeon General, Department of the Army and US Army Medical Department Center & School;
    [Google Scholar]
  114. Stevens T. L., Bossie A., Sanders V. M., Fernandez-Botran R., Coffman R. L., Mosmann T. R., Vitetta E. S.. 1988; Regulation of antibody isotype secretion by subsets of antigen-specific helper T cells. Nature334:255–258 [CrossRef][PubMed]
    [Google Scholar]
  115. Stifter S. A., Bhattacharyya N., Pillay R., Flórido M., Triccas J. A., Britton W. J., Feng C. G.. 2016; Functional interplay between type I and II interferons is essential to limit influenza A virus-induced tissue inflammation. PLoS Pathog12:e1005378 [CrossRef][PubMed]
    [Google Scholar]
  116. Swanson C. L., Wilson T. J., Strauch P., Colonna M., Pelanda R., Torres R. M.. 2010; Type I IFN enhances follicular B cell contribution to the T cell-independent antibody response. J Exp Med207:1485–1500 [CrossRef][PubMed]
    [Google Scholar]
  117. Szomolanyi-Tsuda E., Welsh R. M.. 1996; T cell-independent antibody-mediated clearance of polyoma virus in T cell-deficient mice. J Exp Med183:403–411 [CrossRef][PubMed]
    [Google Scholar]
  118. Tau G., Rothman P.. 1999; Biologic functions of the IFN-γ receptors. Allergy54:1233–1251 [CrossRef][PubMed]
    [Google Scholar]
  119. Teijaro J. R., Verhoeven D., Page C. A., Turner D., Farber D. L.. 2010; Memory CD4 T cells direct protective responses to influenza virus in the lungs through helper-independent mechanisms. J Virol84:9217–9226 [CrossRef][PubMed]
    [Google Scholar]
  120. Thangarajh M., Masterman T., Hillert J., Moerk S., Jonsson R.. 2007; A proliferation-inducing ligand (APRIL) is expressed by astrocytes and is increased in multiple sclerosis. Scand J Immunol65:92–98 [CrossRef][PubMed]
    [Google Scholar]
  121. Tran E. H., Prince E. N., Owens T.. 2000; IFN-γ shapes immune invasion of the central nervous system via regulation of chemokines. J Immunol164:2759–2768 [CrossRef][PubMed]
    [Google Scholar]
  122. Trujillo J. A., Fleming E. L., Perlman S.. 2013; Transgenic CCL2 expression in the central nervous system results in a dysregulated immune response and enhanced lethality after coronavirus infection. J Virol87:2376–2389 [CrossRef][PubMed]
    [Google Scholar]
  123. Tschen S. I., Stohlman S. A., Ramakrishna C., Hinton D. R., Atkinson R. D., Bergmann C. C.. 2006; CNS viral infection diverts homing of antibody-secreting cells from lymphoid organs to the CNS. Eur J Immunol36:603–612 [CrossRef][PubMed]
    [Google Scholar]
  124. Tyor W. R., Wesselingh S., Levine B., Griffin D. E.. 1992; Long term intraparenchymal Ig secretion after acute viral encephalitis in mice. J Immunol149:4016–4020[PubMed]
    [Google Scholar]
  125. van den Hurk A. F., Ritchie S. A., Mackenzie J. S.. 2009; Ecology and geographical expansion of Japanese encephalitis virus. Annu Rev Entomol54:17–35 [CrossRef][PubMed]
    [Google Scholar]
  126. Vences-Catalán F., Santos-Argumedo L.. 2011; CD38 through the life of a murine B lymphocyte. IUBMB Life63:840–846 [CrossRef][PubMed]
    [Google Scholar]
  127. Villari P., Spielman A., Komar N., McDowell M., Timperi R. J.. 1995; The economic burden imposed by a residual case of eastern encephalitis. Am J Trop Med Hyg52:8–13[PubMed]
    [Google Scholar]
  128. Weaver S. C., Reisen W. K.. 2010; Present and future arboviral threats. Antiviral Res85:328–345 [CrossRef][PubMed]
    [Google Scholar]
  129. Willenborg D. O., Fordham S., Bernard C. C., Cowden W. B., Ramshaw I. A.. 1996; IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J Immunol157:3223–3227[PubMed]
    [Google Scholar]
  130. Young H. A., Bream J. H.. 2007; IFN-γ: recent advances in understanding regulation of expression, biological functions, and clinical applications. Curr Top Microbiol Immunol316:97–117[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000613
Loading
/content/journal/jgv/10.1099/jgv.0.000613
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error